Journal of Statistical Physics

, Volume 142, Issue 1, pp 168–200 | Cite as

The One-Dimensional Exactly 1 Cellular Automaton: Replication, Periodicity, and Chaos from Finite Seeds

Open Access


In the Exactly 1 cellular automaton (also known as Rule 22), every site of the one-dimensional lattice is either in state 0 or in state 1, and a synchronous update rule dictates that a site is in state 1 next time if and only if it sees a single 1 in its three-site neighborhood at the current time. We analyze this rule started from finite seeds, i.e., those initial configurations that have only finitely many 1’s. Three qualitatively different types of evolution are observed: replication, periodicity, and chaos. We focus on rigorous results, assisted by algorithmic searches, for the first two behaviors. In particular, we explain why replication is observed so frequently and present a method for collecting the smallest periodic seeds. Some empirical observations about chaotic seeds are also presented.


Additive dynamics Cellular automaton Chaos Entropy Periodic attractor Replicator 


  1. 1.
    Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G., Procaccia, I.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 2387–2389 (1987) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Bilotta, E., Pantano, P.: Emergent patterning phenomena in 2D cellular automata. Artif. Life 11, 339–362 (2005) CrossRefGoogle Scholar
  3. 3.
    Domain, C., Gutowitz, H.: The topological skeleton of cellular automaton dynamics. Physica D 103, 155–168 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Eisele, M.: Long-range correlations in chaotic cellular automata. Physica D 48, 295–310 (1991) MATHCrossRefADSGoogle Scholar
  5. 5.
    Eppstein, D.: Cellular automata: replicators. (2010)
  6. 6.
    Evans, K.M.: Replicators and larger than life examples. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 119–159. Oxford University Press, Oxford (2003) Google Scholar
  7. 7.
    Flocchini, P., Geurts, F.: Searching for chaos in cellular automata: new tools for classification. Complex. Int. 2 (1995).
  8. 8.
    Favatia, P., Lotti, G., Margara, L.: Additive one-dimensional cellular automata are chaotic according to Devaney’s definition of chaos. Theor. Comput. Sci. 174, 157–170 (1997) CrossRefGoogle Scholar
  9. 9.
    Gravner, J., Griffeath, D.: Cellular automaton growth on ℤ2: theorems, examples and problems. Adv. Appl. Math. 21, 241–304 (1998) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gravner, J., Griffeath, D.: Asymptotic densities for Packard Box rules. Nonlinearity 22, 1817–1846 (2009) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Grassberger, P.: New mechanism for deterministic diffusion. Phys. Rev. A 28, 3666–3667 (1983) CrossRefADSGoogle Scholar
  12. 12.
    Grassberger, P.: Long-range effects in an elementary cellular automaton. J. Stat. Phys. 45, 27–39 (1986) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Griffeath, D.: Additive and Cancellative Interacting Particle Systems. Springer, Berlin (1979) MATHGoogle Scholar
  14. 14.
    Griffeath, D.: Primordial soup kitchen. (2010)
  15. 15.
    Hickerson, D.: Private communication (1998) Google Scholar
  16. 16.
    Hickerson, D.: Private communication (2009) Google Scholar
  17. 17.
    Jen, E.: Aperiodicity in one-dimensional cellular automata. Physica D 45, 3–18 (1990) MATHCrossRefADSGoogle Scholar
  18. 18.
    Jen, E.: Exact solvability and quasiperiodicity of one-dimensional cellular automata. Nonlinearity 4, 251–276 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Jen, E.: Transience and dislocations in one-dimensional cellular automata. In: Cellular Automata and Cooperative Systems, Les Houches, 1992. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 396, pp. 299–310. Kluwer Academic, Dordrecht (1993) Google Scholar
  20. 20.
    Eloranta, K., Nummelin, E.: The kink of cellular automaton Rule 18 performs a random walk. J. Stat. Phys. 69, 1131–1136 (1992) MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond, a Constructive Approach with Applications in Life Sciences. Springer, Berlin (2000) Google Scholar
  22. 22.
    Mattos, T.G., Moreira, J.G.: Universality classes of chaotic cellular automata. Braz. J. Phys. 34, 448–451 (2004) CrossRefGoogle Scholar
  23. 23.
    Trevorrow, A., Rokicki, T.: Golly. (2010)
  24. 24.
    Willson, S.J.: Cellular automata can generate fractals. Discrete Appl. Math. 8, 91–99 (1984) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Willson, S.J.: Computing fractal dimensions for additive cellular automata. Physica D 24, 190–206 (1987) MATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Wójtowicz, M.: Mirek’s celebration: a 1D and 2D cellular automata explorer. (2010)
  27. 27.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983) MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Wolfram, S.: Computational theory of cellular automata. Commun. Math. Phys. 96, 15–57 (1984) MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) MATHGoogle Scholar
  30. 30.
    Zabolitzky, J.G.: Critical properties of Rule 22 elementary cellular automata. J. Stat. Phys. 50, 1255–1262 (1988) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of CaliforniaDavisUSA
  2. 2.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations