Journal of Statistical Physics

, Volume 141, Issue 3, pp 589–606 | Cite as

Master Equation in Phase Space for a Spin in an Arbitrarily Directed Uniform External Field

  • Yuri P. Kalmykov
  • Bernard P. J. Mulligan
  • Serguey V. Titov
  • William T. Coffey
Article

Abstract

The time evolution equation for the probability density function of spin orientations in the phase space representation of the polar and azimuthal angles is derived for the nonaxially symmetric problem of a quantum paramagnet subjected to a uniform magnetic field of arbitrary direction. This is accomplished by first rotating the coordinate system into one in which the polar axis is collinear with the field vector, then writing the reduced density matrix equation in the new coordinate system as an explicit inverse Wigner-Stratonovich transformation so that the phase space master equation may be derived just as in the axially symmetric case [Yu.P. Kalmykov et al., J. Stat. Phys. 131:969, 2008]. The properties of this equation, resembling the corresponding Fokker-Planck equation, are investigated. In particular, in the large spin limit, S→∞, the master equation becomes the classical Fokker-Planck equation describing the magnetization dynamics of a classical paramagnet in an arbitrarily directed uniform external field.

Keywords

Spins Quasi-probability distributions Wigner distributions Master equation Fokker-Planck equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland, Amsterdam (1972), Chaps. VI and VII Google Scholar
  2. 2.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001) MATHCrossRefGoogle Scholar
  3. 3.
    Haken, H.: Laser Theory. Springer, Berlin (1984) Google Scholar
  4. 4.
    Hashitsume, N., Shibata, F., Shingū, M.: Quantal master equation for any time scale. J. Stat. Phys. 17(4), 155–169 (1977) CrossRefADSGoogle Scholar
  5. 5.
    Shibata, F., Takahashi, Y., Hashitsume, N.: A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 17(4), 171–187 (1977) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Narducci, L.M., Bowden, C.M., Bluemel, V., Carrazana, G.P.: Phase-space description of the thermal relaxation of a (2J+1)-level system. Phys. Rev. A 11(1), 280–287 (1975) CrossRefADSGoogle Scholar
  7. 7.
    Takahashi, Y., Shibata, F.: Spin coherent state representation in non-equilibrium statistical mechanics. J. Phys. Soc. Jpn. 38(3), 656–668 (1975) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Takahashi, Y., Shibata, F.: Generalized phase space method in spin systems-spin coherent state representation. J. Stat. Phys. 14(1), 49–65 (1976) CrossRefADSGoogle Scholar
  9. 9.
    Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986) MATHGoogle Scholar
  10. 10.
    Shibata, F.: Theory of nonlinear spin relaxation. J. Phys. Soc. Jpn. 49(1), 15–24 (1980) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Shibata, F., Asou, M.: Theory of nonlinear spin relaxation, II. J. Phys. Soc. Jpn. 49(4), 1234–1241 (1980) CrossRefADSGoogle Scholar
  12. 12.
    Shibata, F., Uchiyama, C.: Rigorous solution to nonlinear spin relaxation process. J. Phys. Soc. Jpn. 62(2), 381–384 (1993) CrossRefADSGoogle Scholar
  13. 13.
    Kalmykov, Y.P., Coffey, W.T., Titov, S.V.: Phase-space formulation of the nonlinear longitudinal relaxation of the magnetization in quantum spin systems. Phys. Rev. E 76(5), 051104 (2007) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Kalmykov, Y.P., Coffey, W.T., Titov, S.V.: Phase space Langevin equation for spin relaxation in a dc magnetic field. Europhys. Lett. 80(1), 17002 (2009) CrossRefADSGoogle Scholar
  15. 15.
    Zueco, D., Calvo, I.: Bopp operators and phase-space spin dynamics: application to rotational Brownian motion. J. Phys. A, Math. Theor. 40(17), 4635–4648 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Kalmykov, Y.P., Coffey, W.T., Titov, S.V.: Master equation in phase space for a uniaxial spin system. J. Stat. Phys. 131(5), 969–987 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Kalmykov, Y.P., Titov, S.V., Coffey, W.T.: Nonlinear longitudinal relaxation of a quantum superparamagnet with arbitrary spin value S: phase space and density matrix formulations. Phys. Rev. B 81(9), 094432 (2010) CrossRefADSGoogle Scholar
  18. 18.
    Stratonovich, R.L.: On distributions in representation space. Sov. Phys. JETP 4(6), 891–898 (1957) [Zh. Eksp. Teor. Fiz. 31(6), 1012–1020 (1956)] MathSciNetGoogle Scholar
  19. 19.
    Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40(2), 153–174 (1975) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Scully, M.O., Wodkiewicz, K.: Spin quasi-distribution functions. Found. Phys. 24(1), 85–107 (1994) CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A, Math. Gen. 4(3), 313–323 (1971) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6(6), 2211–2237 (1972) CrossRefADSGoogle Scholar
  23. 23.
    Agarwal, G.S.: Relaxation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A 24(6), 2889–2896 (1981) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Agarwal, G.S.: State reconstruction for a collection of two-level systems. Phys. Rev. A 57(1), 671–673 (1998) CrossRefADSGoogle Scholar
  25. 25.
    Dowling, J.P., Agarwal, G.S., Schleich, W.P.: Wigner distribution of a general angular-momentum state: applications to a collection of two-level atoms. Phys. Rev. A 49(5), 4101–4109 (1994) CrossRefADSGoogle Scholar
  26. 26.
    Brif, C., Mann, A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 59(2), 971–987 (1999) CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Várilly, J.C., Gracia-Bondía, J.M.: The Moyal representation for spins. Ann. Phys. (N.Y.) 190(1), 107–148 (1989) MATHCrossRefADSGoogle Scholar
  28. 28.
    Klimov, A.B.: Exact evolution equations for SU(2) quasidistribution functions. J. Math. Phys. 43(5), 2202–2213 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932) MATHCrossRefADSGoogle Scholar
  30. 30.
    Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin Equation: with Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, 2nd edn. Singapore, World Scientific (2004) MATHCrossRefGoogle Scholar
  31. 31.
    Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd edn. Springer, Berlin (1989) MATHGoogle Scholar
  32. 32.
    García-Palacios, J.L.: Solving quantum master equations in phase space by continued-fraction methods. Europhys. Lett. 65(6), 735–741 (2004) CrossRefADSGoogle Scholar
  33. 33.
    García-Palacios, J.L., Zueco, D.: The Caldeira-Leggett quantum master equation in Wigner phase space: continued fraction solution and application to Brownian motion in periodic potentials. J. Phys. A, Math. Gen. 37(45), 10735–10770 (2004) MATHCrossRefADSGoogle Scholar
  34. 34.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Mulligan, B.P.: Semiclassical master equation in Wigner’s phase space applied to Brownian motion in a periodic potential. Phys. Rev. E 75(4), 041117 (2007) CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Mulligan, B.P.: Quantum master equation in phase space: application to the Brownian motion in a periodic potential. Europhys. Lett. 77(2), 20011–20016 (2007) CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Mulligan, B.P.: Semiclassical Klein-Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential. J. Phys. A, Math. Theor. 40(3), F91 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Mulligan, B.P.: Wigner function approach to the quantum Brownian motion of a particle in a periodic potential. Phys. Chem. Chem. Phys. 9, 3361–3382 (2007) CrossRefGoogle Scholar
  38. 38.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V.: Solution of the master equation for Wigner’s quasiprobability distribution in phase space for the Brownian motion of a particle in a double well potential. J. Chem. Phys. 127(7), 074502 (2007) CrossRefADSGoogle Scholar
  39. 39.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Cleary, L.: Smoluchowski equation approach for quantum Brownian motion in a tilted periodic potential. Phys. Rev. E 78(3), 031114 (2008) CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Kalmykov, Y.P., Coffey, W.T., Titov, S.V.: Phase-space distributions and their applications to spin systems with nonaxially symmetric Hamiltonians. Phys. Rev. B 77(10), 104418 (2008) CrossRefADSGoogle Scholar
  41. 41.
    Kalmykov, Y.P., Coffey, W.T., Titov, S.V.: Phase space equilibrium distribution function for spins. J. Phys. A, Math. Theor. 41, 105302 (2008) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Slichter, C.P.: Principles of Magnetic Resonance, 3rd edn. Springer, Berlin (2010) Google Scholar
  43. 43.
    Blum, K.: Density Matrix Theory and Applications, 2nd edn. Springer, New York (2010) Google Scholar
  44. 44.
    Zubarev, D.N., Morozov, V., Röpke, G.: Statistical Mechanics of Nonequilibrium Processes, vol. 1. Akademie, Berlin (2001) Google Scholar
  45. 45.
    Shibata, F., Saito, Y.: Relaxation process in a spin system—on the Brownian motion of a spin. J. Phys. Soc. Jpn. 38(6), 1580–1585 (1975) CrossRefADSGoogle Scholar
  46. 46.
    Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1998) Google Scholar
  47. 47.
    Garanin, D.A.: Quantum thermoactivation of nanoscale magnets. Phys. Rev. E 55(3), 2569–2572 (1997) CrossRefADSGoogle Scholar
  48. 48.
    García-Palacios, J.L., Zueco, D.: Solving spin quantum master equations with matrix continued-fraction methods: application to superparamagnets. J. Phys. A, Math. Gen. 39(42), 13243–13284 (2006) MATHCrossRefADSGoogle Scholar
  49. 49.
    Zueco, D., García-Palacios, J.L.: Longitudinal relaxation and thermoactivation of quantum superparamagnets. Phys. Rev. B 73(10), 104448 (2006) CrossRefADSGoogle Scholar
  50. 50.
    Brown, W.F. Jr.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963) CrossRefADSGoogle Scholar
  51. 51.
    Brown, W.F. Jr.: Thermal fluctuations of fine ferromagnetic particles. IEEE Trans. Magn. 15(5), 1196–1208 (1979) CrossRefADSGoogle Scholar
  52. 52.
    Puri, R.R.: Mathematical Methods of Quantum Optics. Springer, Berlin (2010) Google Scholar
  53. 53.
    Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I) Exact solutions and perturbation theory. Nucl. Phys. 62(2), 188–198 (1965) CrossRefMathSciNetGoogle Scholar
  54. 54.
    Meshkov, N., Glick, A.J., Lipkin, H.J.: Validity of many-body approximation methods for a solvable model: (II) Linearization procedures. Nucl. Phys. 62(2), 199–210 (1965) CrossRefMathSciNetGoogle Scholar
  55. 55.
    Caneschi, A., Gatteschi, D., Sangregorio, C., Sessoli, R., Sorace, L., Cornia, A., Novak, M.A., Paulsen, C., Wernsdorfer, W.: The molecular approach to nanoscale magnetism. J. Magn. Magn. Mater. 200(1–3), 182–201 (1999) CrossRefADSGoogle Scholar
  56. 56.
    Kalmykov, Y.P., Titov, S.V., Coffey, W.T.: Spin size effects in stochastic resonance in uniaxial superparamagnets. Phys. Rev. B 81(17), 174411 (2010); Classical-quantum crossover in magnetic stochastic resonance in uniaxial superparamagnets. J. Phys. Condens Matter 22(37), 376001 (2010) CrossRefGoogle Scholar
  57. 57.
    Nitzan, A.: Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford University Press, Oxford (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yuri P. Kalmykov
    • 1
  • Bernard P. J. Mulligan
    • 2
  • Serguey V. Titov
    • 3
  • William T. Coffey
    • 4
  1. 1.Laboratoire de Mathématiques, Physique et SystèmesUniversité de PerpignanPerpignan CedexFrance
  2. 2.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  3. 3.Institute of Radio Engineering and ElectronicsRussian Acad. Sci.FryazinoRussia
  4. 4.Department of Electronic and Electrical EngineeringTrinity CollegeDublinIreland

Personalised recommendations