Journal of Statistical Physics

, Volume 141, Issue 2, pp 217–241 | Cite as

Layering in the Ising Model

  • Kenneth S. Alexander
  • François Dunlop
  • Salvador Miracle-Solé
Article

Abstract

We consider the three-dimensional Ising model in a half-space with a boundary field (no bulk field). We compute the low-temperature expansion of layering transition lines.

Keywords

Ising model Layering transitions Low-temperature expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, D.B.: Solvable model with a roughening transition for a planar Ising ferromagnet. Phys. Rev. Lett. 44, 1165–1168 (1980) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Alexander, K.S., Dunlop, F., Miracle-Solé, S.: Layering and wetting transitions for an SOS interface. arXiv:0908.0321v1 [math-ph]
  3. 3.
    Basuev, A.G.: Ising model in half-space: a series of phase transitions in low magnetic fields. Theor. Math. Phys. 153, 1539–1574 (2007) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Binder, K., Landau, D.P.: Wetting versus layering near the roughening transition in the 3d Ising model. Phys. Rev. B 46, 4844 (1992) CrossRefADSGoogle Scholar
  5. 5.
    Cahn, J.W.: Critical point wetting. J. Chem. Phys. 66, 3667 (1977) CrossRefADSGoogle Scholar
  6. 6.
    Chalker, J.T.: The pinning of an interface by a planar defect. J. Phys. A, Math. Gen. 15, L481–L485 (1982) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Dobrushin, R.L.: Gibbs states describing a coexistence of phases for the three-dimensional Ising model. Theory Probab. Appl. 17, 582–600 (1972); reprinted in: Math. Problems of Statistical Mechanics, World Scientific, Singapore (1991) MATHCrossRefGoogle Scholar
  8. 8.
    Fröhlich, J., Pfister, C.E.: Semi-infinite Ising model: II. The wetting and layering transitions. Commun. Math. Phys. 112, 51–74 (1987) MATHCrossRefADSGoogle Scholar
  9. 9.
    Gallavotti, G., Martin-Lof, A., Miracle-Sole, S.: Some problems connected with the description of coexisting phases at low temperatures in Ising models. In: Lenard, A. (ed.) Mathematical Methods in Statistical Mechanics, pp. 162–202. Springer, Berlin (1973) CrossRefGoogle Scholar
  10. 10.
    Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer systems. Commun. Math. Phys. 103, 491–498 (1986) MATHCrossRefADSGoogle Scholar
  11. 11.
    Miracle-Solé, S.: On the convergence of cluster expansions. Physica A 279, 244–249 (2000) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Pandit, R., Schick, M., Wortis, M.: Systematics of multilayer phenomena on attractive substrates. Phys. Rev. B 26, 5112–5140 (1982) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kenneth S. Alexander
    • 1
  • François Dunlop
    • 2
  • Salvador Miracle-Solé
    • 3
  1. 1.Department of Mathematics KAP 108University of Southern CaliforniaLos AngelesUSA
  2. 2., Université de Cergy-PontoiseCergy-PontoiseFrance
  3. 3.Centre de Physique ThéoriqueCNRSMarseille cedex 9France

Personalised recommendations