Journal of Statistical Physics

, Volume 140, Issue 5, pp 900–916 | Cite as

Determinant Representation for Some Transition Probabilities in the TASEP with Second Class Particles

Article

Abstract

We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.

Keywords

Interacting particle systems TASEP Second class particles Transition probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) MATHGoogle Scholar
  2. 2.
    Schütz, G.M.: In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic, London (2001) CrossRefGoogle Scholar
  3. 3.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHGoogle Scholar
  4. 4.
    Burgers, J.M.: The Nonlinear Diffusion Equation. Riedel, Boston (1974) MATHGoogle Scholar
  5. 5.
    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986) MATHCrossRefADSGoogle Scholar
  6. 6.
    Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. arXiv:1002.1879 (2010)
  7. 7.
    Angel, O.: The stationary measure of a 2-type totally asymmetric exclusion process. J. Combin. Theory Ser. A 113, 625 (2006) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ferrari, P., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226 (1991) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ferrari, P.A., Fontes, L.R.G.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305 (1994) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Derrida, B., Lebowitz, J.L., Speer, E.: Shock profiles for the asymmetric simple exclusion process in one dimension. J. Stat. Phys. 89, 135 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Belitsky, V., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Probab. 7, 11 (2002) MathSciNetGoogle Scholar
  12. 12.
    Krebs, K., Jafarpour, F.H., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. New J. Phys. 5, 145 (2003) CrossRefADSGoogle Scholar
  13. 13.
    Speer, E.R.: In: Fannes, C., Verbuere, A. (eds.) On Three Levels: Micro, Meso and Macroscopic Approaches in Physics, pp. 91–102. Plenum, New York (1994) Google Scholar
  14. 14.
    Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Microscopic-shock profiles: exact solution of a non-equilibrium system. Europhys. Lett. 22, 651 (1993) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Godrechè, C., et al.: Spontaneous symmetry breaking: exact results for a biased random walk model of an exclusion process. J. Phys. A: Math. Gen. 28, 6039 (1995) MATHCrossRefADSGoogle Scholar
  16. 16.
    Schütz, G.M.: Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. A: Math. Gen. 36, R339 (2003) MATHCrossRefGoogle Scholar
  17. 17.
    Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Theor. 40, R333 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Ferrari, P.A., Gonçalves, P., Martin, J.B.: Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri. Poincaré Probab. Stat. 45, 1048 (2009) MATHCrossRefGoogle Scholar
  20. 20.
    Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35, 807 (2007) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135, 217 (2009) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion processes. J. Stat. Phys. 88, 427 (1997) MATHCrossRefADSGoogle Scholar
  23. 23.
    Gwa, L.H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725 (1992) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Nagao, T., Sasamoto, T.: Asymmetric simple exclusion process and modified random matrix ensembles. Nucl. Phys. B 699, 487 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Rákos, A., Schütz, G.M.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511 (2005) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Priezzhev, V.B., Schütz, G.M.: Exact solution of the Bernoulli matching model of sequence alignment. J. Stat. Mech. Theory Exp., P09007 (2008) Google Scholar
  27. 27.
    Brankov, J., Priezzhev, V.B., Shelest, R.V.: Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process. Phys. Rev. E 69, 066136 (2004) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A, Math. Gen. 38, L549 (2005) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Povolotsky, A.M., Priezzhev, V.B.: Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech., P07002 (2006) Google Scholar
  30. 30.
    Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech., P07007 (2007) Google Scholar
  31. 31.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron J. Probab. 13, 1380 (2008) MATHMathSciNetGoogle Scholar
  33. 33.
    Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Tracy, C.A., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132, 291 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Schultz, C.L.: Eigenvectors of the multi-component generalization of the six-vertex model. Physica A 122, 71 (1983) CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967) MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Sutherland, B.: Further results for the many-body problem in one dimension. Phys. Rev. Lett. 20, 98 (1968) CrossRefADSGoogle Scholar
  38. 38.
    Arita, C., Kuniba, A., Sakai, K., Sawabe, T.: Spectrum of a multi-species asymmetric simple exclusion process on a ring. J. Phys. A: Math. Theor. 42, 345002 (2009) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Alcaraz, F.C., Rittenberg, V.: Reaction-diffusion processes as physical realizations of Hecke algebras. Phys. Lett. B 314, 377 (1993) CrossRefADSGoogle Scholar
  40. 40.
    Popkov, V., Fouladvand, E., Schütz, G.M.: A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains. J. Phys. A: Math. Gen. 35, 7187 (2002) MATHCrossRefADSGoogle Scholar
  41. 41.
    Priezzhev, V.B.: Exact nonstationary probabilities in the asymmetric exclusion process on a ring. Phys. Rev. Lett. 91, 050601 (2003) CrossRefADSGoogle Scholar
  42. 42.
    Lushnikov, A.A.: Binary reaction 1+1.0→0 in one dimension. Sov. Phys. JETP 64, 811 (1986) Google Scholar
  43. 43.
    Lushnikov, A.A.: Binary reaction 1+1.0→0 in one dimension. Phys. Lett. A 120, 135 (1987) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Barma, M., Grynberg, M.D., Stinchcombe, R.B.: Jamming and kinetics of deposition-evaporation systems and associated quantum spin models. Phys. Rev. Lett. 70, 1033 (1993) CrossRefADSGoogle Scholar
  45. 45.
    Stinchcombe, R.B., Grynberg, M.D., Barma, M.: Diffusive dynamics of deposition-evaporation systems, jamming, and broken symmetries in related quantum-spin models. Phys. Rev. E 47, 4018 (1993) CrossRefADSGoogle Scholar
  46. 46.
    Schütz, G.M.: Diffusion-annihilation in the presence of a driving field. J. Phys. A 28, 3405 (1995) MATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Dorlas, T.C., Povolotsky, A.M., Priezzhev, V.B.: From vicious walkers to TASEP. J. Stat. Phys. 135, 483 (2009) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für FestkörperforschungForschungzentrum JülichJülichGermany
  2. 2.Physics DepartmentTechnionHaifaIsrael

Personalised recommendations