Advertisement

Journal of Statistical Physics

, Volume 140, Issue 5, pp 846–872 | Cite as

Finite Size Effects and Metastability in Zero-Range Condensation

  • Paul ChlebounEmail author
  • Stefan Grosskinsky
Article

Abstract

We study zero-range processes which are known to exhibit a condensation transition, where above a critical density a non-zero fraction of all particles accumulates on a single lattice site. This phenomenon has been a subject of recent research interest and is well understood in the thermodynamic limit. The system shows large finite size effects, and we observe a switching between metastable fluid and condensed phases close to the critical point, in contrast to the continuous limiting behaviour of relevant observables. We describe the leading order finite size effects and establish a discontinuity near criticality in a rigorous scaling limit. We also characterise the metastable phases using a current matching argument and an extension of the fluid phase to supercritical densities. This constitutes an interesting example where the thermodynamic limit fails to capture essential parts of the dynamics, which are particularly relevant in applications with moderate system sizes such as traffic flow or granular clustering.

Keywords

Zero range process Condensation Metastability Finite size effects Large deviations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angel, A.G., Evans, M.R., Mukamel, D.: Condensation transitions in a one-dimensional zero-range process with a single defect site. J. Stat. Mech. 4, 04001 (2004) CrossRefGoogle Scholar
  3. 3.
    Armendáriz, I., Grosskinsky, S., Loulakis, M.: Zero range condensation at criticality (2009). arXiv:0912.1793v1 [math.PR]
  4. 4.
    Armendáriz, I., Loulakis, M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Relat. Fields 145(1), 175–188 (2009) zbMATHCrossRefGoogle Scholar
  5. 5.
    Behringer, H., Pleimling, M.: Continuous phase transitions with a convex dip in the microcanonical entropy. Phys. Rev. E 74(1), 011108 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Beltrán, J., Landim, C.: Meta-stability and condensed zero-range processes on finite sets (2008). arXiv:0802.2171 [math.PR]
  7. 7.
    Beltrán, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set (2009). arXiv:0910.4089v1 [math.PR]
  8. 8.
    Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains (2009). arXiv:0910.4088v1 [math.PR]
  9. 9.
    Biskup, M., Chayes, L., Kotecký, R.: On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60(1), 21 (2002) CrossRefADSGoogle Scholar
  10. 10.
    Biskup, M., Chayes, L., Kotecký, R.: Critical region for droplet formation in the two-dimensional Ising model. Commun. Math. Phys. 242(1), 137–183 (2003) zbMATHADSGoogle Scholar
  11. 11.
    Davis, B., McDonald, D.: An elementary proof of the local central limit theorem. J. Theor. Probab. 8(3), 693–701 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–57 (2000) CrossRefGoogle Scholar
  13. 13.
    Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A, Math. Gen. 38(19), R195–R240 (2005) zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Evans, M.R., Majumdar, S.N.: Condensation and extreme value statistics. J. Stat. Mech., Theory Exp. 2008(05), P05004 (2008) CrossRefGoogle Scholar
  15. 15.
    Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorised steady states. J. Stat. Phys. 123(2), 357–390 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Ferrari, P.A., Landim, C., Sisko, V.V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128(5), 1153–1158 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Godreche, C.: Dynamics of condensation in zero-range processes. J. Phys. A, Math. Gen. 36(23), 6313–6328 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Godreche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A, Math. Gen. 38(33), 7215–7237 (2005) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Grosskinsky, S.: Equivalence of ensembles for two-species zero-range invariant measures. Stoch. Process. Appl. 118(8), 1322–1350 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Grosskinsky, S., Schütz, G.M.: Discontinuous condensation transition and nonequivalence of ensembles in a zero-range process. J. Stat. Phys. 132(1), 77–108 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: Stationary and dynamical properties. J. Stat. Phys. 113(3), 389–410 (2003) zbMATHCrossRefGoogle Scholar
  22. 22.
    Gupta, S., Barma, M., Majumdar, S.N.: Finite-size effects on the dynamics of the zero-range process. Phys. Rev. E 76, 4 (2007) MathSciNetGoogle Scholar
  23. 23.
    Hirschberg, O., Mukamel, D., Schütz, G.M.: Condensation in temporally correlated zero-range dynamics. Phys. Rev. Lett. 103(9), 090602 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Holley, R.: A class of interactions in an infinite particle system. Adv. Math. 5(2), 291–309 (1970) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hüller, A.: Finite size scaling at first order phase transition? Z. Phys. B, Condens. Matter 95, 63–66 (1994) CrossRefADSGoogle Scholar
  26. 26.
    Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28(3), 1162–1194 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Török, J.: Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89(3), 035702 (2002) CrossRefADSGoogle Scholar
  28. 28.
    Kaupuzs, J., Mahnke, R., Harris, R.J.: Zero-range model of traffic flow. Phys. Rev. E 72(5, Part 2), 5 (2005) Google Scholar
  29. 29.
    Kim, S.W., Lee, J., Noh, J.D.: Particle condensation in pair exclusion process (2010). arXiv:1001.3563v1 [cond-mat.stat-mech]
  30. 30.
    Levine, E., Ziv, G., Gray, L., Mukamel, D.: Traffic jams and ordering far from thermal equilibrium. Physica A 340, 636–646 (2004) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Liggett, T., Spitzer, F.: Ergodic theorems for coupled random walks and other systems with locally interacting components. Probab. Theory Relat. Fields 56(4), 443–468 (1981) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Majumdar, S.N., Evans, M.R., Zia, R.K.P.: Nature of the condensate in mass transport models. Phys. Rev. Lett. 94(18), 180601 (2005) CrossRefADSGoogle Scholar
  33. 33.
    Murthy, K.P.N., Kehr, K.W.: Mean first-passage time of random walks on a random lattice. Phys. Rev. A 40(4), 2082–2087 (1989) CrossRefADSGoogle Scholar
  34. 34.
    Schwarzkopf, Y., Evans, M.R., Mukamel, D.: Zero-range processes with multiple condensates: statics and dynamics. J. Phys. A, Math. Theor. 41(20), 205001 (2008) (21pp) CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(246–290), 2 (1970) MathSciNetGoogle Scholar
  36. 36.
    Thompson, A.G., Tailleur, J., Cates, M.E., Blythe, R.A.: Zero-range processes with saturated condensation: the steady state and dynamics. J. Stat. Mech., Theory Exp. 2010(02), P02013 (2010) CrossRefGoogle Scholar
  37. 37.
    Török, J.: Analytic study of clustering in shaken granular material using zero-range processes. Physica A 355(2–4), 374–382 (2005) CrossRefADSGoogle Scholar
  38. 38.
    van der Meer, D., van der Weele, K., Lohse, D.: Sudden collapse of a granular cluster. Phys. Rev. Lett. 88(17), 174302 (2002) CrossRefADSGoogle Scholar
  39. 39.
    van der Meer, D., van der Weele, K., Reimann, P., Lohse, D.: Compartmentalized granular gases: flux model results. J. Stat. Mech. 07, P07021 (2007) CrossRefGoogle Scholar
  40. 40.
    van der Weele, K., van der Meer, D., Versluis, M., Lohse, D.: Hysteretic clustering in granular gas. Europhys. Lett. 53(3), 328–334 (2001) CrossRefADSGoogle Scholar
  41. 41.
    Wilson, R.E.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. A 366(1872), 2017–2032 (2008) zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics Institute and Centre for Complexity ScienceUniversity of WarwickCoventryUK

Personalised recommendations