Advertisement

Journal of Statistical Physics

, Volume 140, Issue 4, pp 718–727 | Cite as

Do Solids Flow?

  • F. Sausset
  • G. Biroli
  • J. Kurchan
Article

Abstract

Are solids intrinsically different from liquids? Must a finite stress be applied in order to induce flow? Or, instead, do all solids only look rigid on some finite timescales and eventually flow if an infinitesimal shear stress is applied? Surprisingly, these simple questions are a matter of debate and definite answers are still lacking. Here we show that solidity is only a time-scale dependent notion: equilibrium states of matter that break spontaneously translation invariance, e.g. crystals, flow if even an infinitesimal stress is applied. However, they do so in a way inherently different from ordinary liquids since their viscosity diverges for vanishing shear stress with an essential singularity. We find an ultra-slow decrease of the shear stress as a function of the shear rate, which explains the apparent yield stress identified in rheological flow curves. Furthermore, we suggest that an alternating shear of frequency ω and amplitude γ should lead to a dynamic phase transition line in the (ω,γ) plane, from a ‘flowing’ to a ‘non-flowing’ phase. Finally, we apply our results to crystals, show the corresponding microscopic process leading to flow and discuss possible experimental investigations.

Keywords

Solid Flow Yield stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edgeworth, R., Dalton, B.J., Parnell, T.: Eur. J. Phys. 198 (1984). See also http://www.smp.uq.edu.au/pitch/
  2. 2.
    Barnes, H.A.: J. Non-Newtonian Fluid. Mech. 81, 133 (1999) zbMATHCrossRefGoogle Scholar
  3. 3.
    Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge Univ. Press, Cambridge (1995) Google Scholar
  4. 4.
    Anderson, P.W.: Basic Notion of Condensed Matter Physics. Westview Press, Boulder (1997) Google Scholar
  5. 5.
    Balibar, S., Alles, H., Parshin, A.Ya.: Rev. Mod. Phys. 77, 317 (2005) CrossRefADSGoogle Scholar
  6. 6.
    Pantalei, C., Rojas, X., Edwards, D.O., Balibar, S.: J. Low Temp. Phys. (2010). doi: 10.1007/s10909-010-0159-6 Google Scholar
  7. 7.
    Noda, A., Kohiro, K., Oda, O.: J. Electron. Mater. 25, 1841 (1996) CrossRefADSGoogle Scholar
  8. 8.
    Hirth, J.P., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968) Google Scholar
  9. 9.
    Duez, C., Ybert, C., Clanet, C., Bocquet, L.: Nat. Phys. 3, 180 (2007) CrossRefGoogle Scholar
  10. 10.
    Debenedetti, P.G.: Metastable Liquids. Princeton University Press, Princeton (1996) Google Scholar
  11. 11.
    Langer, J.S., Ambegaokar, V.: Phys. Rev. 164, 498 (1967) CrossRefADSGoogle Scholar
  12. 12.
    Langer, J.S., Fisher, M.E.: Phys. Rev. Lett. 19, 560 (1967) CrossRefADSGoogle Scholar
  13. 13.
    Buchel, A., Sethna, J.P.: Phys. Rev. Lett. 77, 1520 (1996) CrossRefADSGoogle Scholar
  14. 14.
    Bruinsma, R., Halperin, B.I., Zippelius, A.: Phys. Rev. B 25, 579 (1982) CrossRefADSGoogle Scholar
  15. 15.
    Dahm, A.J., Stan, M.A., Petschek, R.G.: Phys. Rev. B 40, 9006 (1989) CrossRefADSGoogle Scholar
  16. 16.
    Lyuksyutov, I.F., Pokrovsky, V., Nattermann, T.: Phys. Rev. B 59, 4260 (1998) CrossRefADSGoogle Scholar
  17. 17.
    Barnes, H.A., Hutton, J.F., Walters, K.: An Introduction to Rheology. Elsevier, Amsterdam (1993) Google Scholar
  18. 18.
    Bavaud, F., Choquard, Ph., Fontaine, J.R.: J. Stat. Phys. 42, 621 (1986) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Williams, S.R., Evans, D.J.: J. Chem. Phys. 131, 024115 (2009) CrossRefADSGoogle Scholar
  20. 20.
    Schall, P., Cohen, I., Weitz, D.A., Spaepen, F.: Nature 440, 319 (2006) CrossRefADSGoogle Scholar
  21. 21.
    Bray, A.J.: Adv. Phys. 43, 357 (1994) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Hébraud, P., Lequeux, F.: Phys. Rev. Lett. 81, 2934 (1998) CrossRefADSGoogle Scholar
  23. 23.
    Bocquet, L., Colin, A., Ajdari, A.: Phys. Rev. Lett. 103, 036001 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Sausset, F., Biroli, G., Kurchan, J.: in preparation Google Scholar
  25. 25.
    Liu, A.J., Nagel, S.R.: Nature 396, 21 (1998) CrossRefADSGoogle Scholar
  26. 26.
    Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A.: Phys. Rev. E 63, 016120 (2001) CrossRefADSGoogle Scholar
  27. 27.
    Lothe, J., Hirth, J.P.: Phys. Rev. 115, 543 (1959) zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Mézard, M., Yoshino, H.: arXiv:1003.3039

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut de Physique Théorique, CEA, IPhTCNRS, URA 2306Gif-sur-YvetteFrance
  2. 2.Physique et Mécanique des Milieux Hétérogènes, PMMH, ESPCICNRS, UMR 7636ParisFrance

Personalised recommendations