Journal of Statistical Physics

, Volume 138, Issue 1–3, pp 431–446 | Cite as

Switching Phenomena in a System with No Switches

Article

Abstract

It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends (“bubble formation”) and decreasing trends (“financial collapse”). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

Econophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, P.W.: Science 177, 393 (1972) CrossRefADSGoogle Scholar
  2. 2.
    Stanley, H.E.: Rev. Mod. Phys. 71, S358 (1999) CrossRefGoogle Scholar
  3. 3.
    Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics Correlations and Complexity in Finance. Cambridge Univ. Press, Cambridge (2000) MATHGoogle Scholar
  4. 4.
    Axtell, R.L.: Science 293, 1818 (2001) CrossRefADSGoogle Scholar
  5. 5.
    Takayasu, H. (ed.): Practical Fruits of Econophysics. Springer, Berlin (2006) Google Scholar
  6. 6.
    Kiyono, K., Struzik, Z.R., Yamamoto, Y.: Phys. Rev. Lett. 96, 068701 (2006) CrossRefADSGoogle Scholar
  7. 7.
    Watanabe, K., Takayasu, H., Takayasu, M.: Physica A 383, 120 (2007) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E.: Nature 423, 267 (2003) CrossRefADSGoogle Scholar
  9. 9.
    Preis, T., Paul, W., Schneider, J.J.: Europhys. Lett. 82, 68005 (2008) CrossRefADSGoogle Scholar
  10. 10.
    Preis, T., Virnau, P., Paul, W., Schneider, J.J.: New J. Phys. 11, 093024 (2009) CrossRefGoogle Scholar
  11. 11.
    Lillo, F., Farmer, J.D., Mantegna, R.N.: Nature 421, 129 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Plerou, V., Gopikrishnan, P., Gabaix, X., Stanley, H.E.: Phys. Rev. E 66, 027104 (2002) CrossRefADSGoogle Scholar
  13. 13.
    Cont, R., Bouchaud, J.P.: Macroecon. Dyn. 4, 170 (2000) MATHCrossRefGoogle Scholar
  14. 14.
    Krawiecki, A., Holyst, J.A., Helbing, D.: Phys. Rev. Lett. 89, 158701 (2002) CrossRefADSGoogle Scholar
  15. 15.
    O’Hara, M.: Market Microstructure Theory. Blackwell, Cambridge (1995) Google Scholar
  16. 16.
    Vandewalle, N., Ausloos, M.: Physica A 246, 454 (1997) CrossRefADSGoogle Scholar
  17. 17.
    Eisler, Z., Kertész, J.: Phys. Rev. E 73, 046109 (2006) CrossRefADSGoogle Scholar
  18. 18.
    Mandelbrot, B.: J. Bus. 36, 394 (1963) CrossRefGoogle Scholar
  19. 19.
    Fama, E.F.: J. Bus. 36, 420 (1963) CrossRefGoogle Scholar
  20. 20.
    Lux, T.: Appl. Financ. Econ. 6, 463 (1996) CrossRefGoogle Scholar
  21. 21.
    Guillaume, D.M., Dacorogna, M.M., Davé, R.R., Müller, U.A., Olsen, R.B., Pictet, O.V.: Financ. Stoch. 1, 95 (1997) MATHCrossRefGoogle Scholar
  22. 22.
    Gopikrishnan, P., Meyer, M., Amaral, L., Stanley, H.E.: Eur. J. Phys. B 3, 139 (1998) CrossRefADSGoogle Scholar
  23. 23.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Phys. Rev. Lett. 83, 1471 (1999) CrossRefADSGoogle Scholar
  24. 24.
    Gopikrishnan, P., Plerou, V., Amaral, L.A.N., Meyer, M., Stanley, H.E.: Phys. Rev. E 60, 5305 (1999) CrossRefADSGoogle Scholar
  25. 25.
    Gopikrishnan, P., Plerou, V., Gabaix, X., Stanley, H.E.: Phys. Rev. E 62, 4493 (2000) CrossRefADSGoogle Scholar
  26. 26.
    Krugman, P.: The Self-Organizing Economy. Blackwell, Cambridge (1996) Google Scholar
  27. 27.
    Shleifer, A.: Inefficient Markets: An Introduction to Behavioral Finance. Oxford Univ. Press, Oxford (2000) Google Scholar
  28. 28.
    Helbing, D., Farkas, I., Vicsek, T.: Nature 407, 487 (2000) CrossRefADSGoogle Scholar
  29. 29.
    Bunde, A., Schellnhuber, H.J., Kropp, J. (eds.): The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes. Springer, Berlin (2002) Google Scholar
  30. 30.
    Jones, C.M., Kaul, G., Lipson, M.L.: Rev. Financ. Stud. 7, 631 (1994) CrossRefGoogle Scholar
  31. 31.
    Chan, L., Fong, W.M.: J. Financ. Econ. 57, 247 (2000) CrossRefGoogle Scholar
  32. 32.
    Politi, M., Scalas, E.: Physica A 387, 2025 (2008) CrossRefADSGoogle Scholar
  33. 33.
    Jiang, Z.Q., Chen, W., Zhou, W.X.: Physica A 388, 433 (2009) CrossRefADSGoogle Scholar
  34. 34.
    Dubil, R.: An Arbitrage Guide to Financial Markets. Wiley, Chichester (2004) Google Scholar
  35. 35.
    Deutsch, H.P.: Derivate und Interne Modelle: Modernes Risk Management. Schaefer-Poeschel, Stuttgart (2001) CrossRefGoogle Scholar
  36. 36.
    Binder, K.: Rep. Prog. Phys. 50, 783 (1987) CrossRefADSGoogle Scholar
  37. 37.
    Peng, C.K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L.: Phys. Rev. Lett. 70, 1343 (1993) CrossRefADSGoogle Scholar
  38. 38.
    Helbing, D., Huberman, B.A.: Nature 396, 738 (1998) CrossRefADSGoogle Scholar
  39. 39.
    Ivanov, P.C., Yuen, A., Podobnik, B., Lee, Y.: Phys. Rev. E 69, 056107 (2004) CrossRefADSGoogle Scholar
  40. 40.
    Helbing, D.: Phys. Rev. E 55, R25 (1996) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Preis, T., Schneider, J.J., Stanley, H.E.: Formation and bursting of financial bubbles. Preprint (2009) Google Scholar
  42. 42.
    Smith, E., Farmer, J.D., Gillemot, L., Krishnamurthy, S.: Quant. Finance 3, 481 (2003) CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Lux, T., Marchesi, M.: Nature 397, 498 (1999) CrossRefADSGoogle Scholar
  44. 44.
    Preis, T., Golke, S., Paul, W., Schneider, J.J.: Europhys. Lett. 75, 510 (2006) CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Preis, T., Golke, S., Paul, W., Schneider, J.J.: Phys. Rev. E 76, 016108 (2007) CrossRefADSGoogle Scholar
  46. 46.
    Bouchaud, J.P., Matacz, A., Potters, M.: Phys. Rev. Lett. 87, 228701 (2001) CrossRefADSGoogle Scholar
  47. 47.
    Haerdle, W., Kleinow, T., Korostelev, A., Logeay, C., Platen, E.: Quant. Financ. 8, 81 (2008) MATHCrossRefGoogle Scholar
  48. 48.
    Halla, A.D., Hautsch, N.: J. Financ. Mark. 10, 249 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Polymer StudiesDepartment of PhysicsBostonUSA
  2. 2.Institute of PhysicsJohannes Gutenberg University MainzMainzGermany
  3. 3.Artemis Capital Asset Management GmbHHolzheimGermany

Personalised recommendations