Journal of Statistical Physics

, Volume 138, Issue 1–3, pp 2–7 | Cite as

Chaos Theory Yesterday, Today and Tomorrow

Article

Abstract

This paper gives a short historical survey of basic events which had happend during the developmentb of chaos theory.

Anosov systems Bernoulli shift Chaos Entropy Geodesic flow K-system Standard map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afraimovich, V.S., Bykov, V.V., Shilnikov, L.P.: On attractive non-robust limiting sets of type of Lorenz attractor. Mosc. Math. Soc. 44, 150–212 (1983) MathSciNetGoogle Scholar
  2. 2.
    Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Inst. 90, 210 (1967) MathSciNetGoogle Scholar
  3. 3.
    Bálint, P., Chernov, N., Szasz, D., Toth, I.: Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem. Ann. Inst. Henri Poincare 3, 451–482 (2002) MATHCrossRefGoogle Scholar
  4. 4.
    Bálint, P., Chernov, N., Szasz, D., Toth, I.: Geometry of multi-dimensional dispersing billiards. Astérisque 286, 119–150 (2003) Google Scholar
  5. 5.
    Benedicks, M., Carleson, L.: The dynamics of the Henon map. Ann. Math. 133(1), 73–170 (1991) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math., vol. 470. Springer, Berlin (1975) MATHGoogle Scholar
  7. 7.
    Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billards. Commun. Math. Phys. 65(3), 295–312 (1979) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bunimovich, L.A.: Chaotic and non-chaotic mushrooms. Discrete Contin. Dyn. Syst. 22(1–2), 63–74 (2008) MATHMathSciNetGoogle Scholar
  9. 9.
    Bunimovich, L.A.: Chaotic billiards. Bull. Am. Math. Soc. 46(4), 683–690 (2009) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bunimovich, L., Chernov, N., Sinai, Ya.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46, 47–106 (1991) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chernov, N., Markarian, R.: Chaotic Billards. Math. Surveys and Monographs, vol. 127. AMS, Providence (2006), 316 pp. Google Scholar
  12. 12.
    Chernov, N., Sinai, Ya.: Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Russ. Math. Surv. 42(3), 153–174 (1987) MathSciNetGoogle Scholar
  13. 13.
    Chernov, N., Eyink, G., Lebowitz, J., Sinai, Ya.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154(3), 569–601 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Cohen, E.G.D., Gallavotti, G.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2604–2697 (1995) CrossRefGoogle Scholar
  15. 15.
    Dolgopyat, D.: On decay of correlations in Anosov flows. Ann Math. 147(2), 357–309 (1998) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dyson, F.: Birds and frogs. Not. Am. Math. Soc. 56(2), 212–223 (2009) MATHMathSciNetGoogle Scholar
  17. 17.
    Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979) MATHMathSciNetGoogle Scholar
  18. 18.
    Henon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1876) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Kalikov, S.: T,T {−1} transformation is not loosely Bernoulli. Ann. Math. 115(2), 393–409 (1982) CrossRefGoogle Scholar
  20. 20.
    Kolmogorov, A.N.: Théorie générale des systémes dynamique et mécanique classique. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 315–1333. North-Holland, Amsterdam (1954) Google Scholar
  21. 21.
    Kolmogorov, A.N.: New metric invariant of transitive dynamical systems and automorphisms of lebesgue spaces. Dokl. Acad. Nauk SSSR 119(5), 861–864 (1958) MATHMathSciNetGoogle Scholar
  22. 22.
    Kolmogorov, A.N.: On the entropy per unit of time as a metric invariant of an automorphism. Dokl. Acad. Nauk SSSR 124(4), 754–755 (1959) MATHMathSciNetGoogle Scholar
  23. 23.
    Kramli, A., Simányi, N., Szasz, D.: The K-property of four billiard balls. Commun. Math. Phys. 144(1), 107–148 (1992) MATHCrossRefADSGoogle Scholar
  24. 24.
    Krylov, N.S.: Works on the Foundations of Statistical Mechanics. Princeton University Press, Princeton (1979) Google Scholar
  25. 25.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, Berlin (1983) MATHGoogle Scholar
  26. 26.
    Liverani, C.: On contact Anosov flows. Ann. Math. 159(3), 1275–1312 (2004) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefADSGoogle Scholar
  28. 28.
    Ornstein, D.S.: Ergodic Theory, Randomness and Dynamical Systems. Yale University Press, New Haven (1994), 141 pp. Google Scholar
  29. 29.
    Oseledetz, V.: Multiplicative ergodic theorem, characteristics Lyapunov exponents of dynamical systems. Trans. Mosc. Math. Soc. 19, 179–210 (1968) Google Scholar
  30. 30.
    Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge Studies in Advanced Mathematics, vol. 35. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar
  31. 31.
    Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–111 (1977) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50, 27–58 (1979) MATHMathSciNetGoogle Scholar
  33. 33.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20(3), 167–192 (1971) MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Simanyi, N.: Proof of the ergodic hypothesis for typical hard ball systems. Ann. Henri Poincare 5(2), 203–233 (2004) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sinai, Ya.: On the notion of entropy of dynamical system. Dokl. Acad. Nauk. SSSR 124(4), 768–771 (1959) MATHMathSciNetGoogle Scholar
  36. 36.
    Sinai, Ya.: Weak isomorphism of measure-preserving maps. Mat. Sb. 63(1), 23–42 (1964) MathSciNetGoogle Scholar
  37. 37.
    Sinai, Ya.: Markov partitions and U-diffeomorphisms. Funct. Anal. Appl. 2(1), 64–89 (1968) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Sinai, Ya.: Dynamical systems with elastic collisions. Russ. Math. Surv. 25(2), 141–192 (1970) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967) CrossRefMathSciNetGoogle Scholar
  40. 40.
    Szasz, D., Varjú, T.: Markov towers and stochastic properties of billiards. In: Modern Dynamic Systems and Applications, pp. 433–445. Cambridge University Press, Cambridge (2004) Google Scholar
  41. 41.
    Szasz, D., Varjú, T.: Local limit theorem for the Lorentz process and its recurrence in the plane. Ergod. Theory Dyn. Syst. 24(1), 257–278 (2004) MATHCrossRefGoogle Scholar
  42. 42.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci., Ser. I. Math. 328(12), 1197–1202 (1999) MATHADSGoogle Scholar
  43. 43.
    von Neumann, J.: Operatoren Methode in der Klassischen Mechanik. Ann. Math. 33, 587–642 (1932) CrossRefGoogle Scholar
  44. 44.
    Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 101–152 (1979) Google Scholar
  45. 45.
    Yakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81(1), 39–88 (1981) CrossRefADSGoogle Scholar
  46. 46.
    Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998) MATHCrossRefGoogle Scholar
  47. 47.
    Young, L.-S.: Recurrent time and rate of mixing. Isr. J. Math. 110, 153–188 (1999) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Landau Institute of Theoretical PhysicsMoscowRussia

Personalised recommendations