Journal of Statistical Physics

, Volume 138, Issue 1–3, pp 333–350 | Cite as

Time Ordering and Counting Statistics

Article

Abstract

The basic quantum mechanical relation between fluctuations of transported charge and current correlators is discussed. It is found that, as a rule, the correlators are to be time-ordered in an unusual way. Instances where the difference with the conventional ordering matters are illustrated by means of a simple scattering model. We apply the results to resolve a discrepancy concerning the third cumulant of charge transport across a tunnel junction.

Time ordering Correlation functions Counting statistics Contact terms Schwinger terms Transport theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lesovik, G.B.: Excess quantum noise in 2D ballistic point contacts. JETP Lett. 49, 592–594 (1989) ADSGoogle Scholar
  2. 2.
    Büttiker, M.: Scattering theory of thermal and excess noise in open conductors. Phys. Rev. Lett. 65(23), 2901 (1990) CrossRefADSGoogle Scholar
  3. 3.
    Blanter, Ya.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000) CrossRefADSGoogle Scholar
  4. 4.
    Beenakker, C.W.J., Schomerus, H.: Counting statistics of photons produced by electronic shot noise. Phys. Rev. Lett. 86(4), 700–703 (2001) CrossRefADSGoogle Scholar
  5. 5.
    Levitov, L.S., Lesovik, G.B.: Charge distribution in quantum shot noise. JETP Lett. 58(3), 230–235 (1993) ADSGoogle Scholar
  6. 6.
    Levitov, L.S., Lee, H.W., Lesovik, G.B.: Electron counting statistics and coherent states of electric current. J. Math. Phys. 37(10), 4845–4866 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Matthews, P.T.: The application of Dyson’s method to meson interactions. Phys. Rev. 76(5), 684–685 (1949) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Salo, J., Hekking, F.W.J., Pekola, J.P.: Frequency-dependent current correlation functions from scattering theory. Phys. Rev. B 74, 125427 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Lesovik, G.B., Chtchelkatchev, N.M.: Quantum and classical binomial distributions for the charge transmitted through coherent conductor. JETP Lett. 77(7), 393–396 (2003) CrossRefADSGoogle Scholar
  10. 10.
    Levitov, L.S., Lesovik, G.B.: Charge-transport statistics in quantum conductors. JETP Lett. 55(9), 555–559 (1992) ADSGoogle Scholar
  11. 11.
    Bayandin, K.V., Lebedev, A.V., Lesovik, G.B.: Calculation of three-current correlators for QPC. Unpublished Google Scholar
  12. 12.
    Bomze, Y., Gershon, G., Shovkun, D., Levitov, L.S., Reznikov, M.: Measurement of counting statistics of electron transport in a tunnel junction. Phys. Rev. Lett. 95, 176601 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Gershon, G., Bomze, Yu., Sukhorukov, E.V., Reznikov, M.: Detection of non-Gaussian fluctuations in quantum point contacts. Phys. Rev. Lett. 101, 016803 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Muzykanskii, B.A., Adamov, Y.: Scattering approach to counting statistics in quantum pumps. Phys. Rev. B 68(15), 155304–155313 (2003) CrossRefADSGoogle Scholar
  15. 15.
    Shelankov, A., Rammer, J.: Charge transfer counting statistics revisited. Europhys. Lett. 63, 485–491 (2003) CrossRefADSGoogle Scholar
  16. 16.
    Levitov, L.S., Lesovik, G.B.: Quantum measurement in electric circuit. cond-mat/9401004
  17. 17.
    Belzig, W., Nazarov, Yu.V.: Full counting statistics of electron transfer between superconductors. Phys. Rev. Lett. 87, 197006 (2001) CrossRefADSGoogle Scholar
  18. 18.
    Fleischhauer, M.: Quantum theory of photodetection without the rotating wave approximation. J. Phys. A 31, 453–463 (1998) MATHCrossRefADSGoogle Scholar
  19. 19.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré 19(3), 211–295 (1973) MathSciNetGoogle Scholar
  20. 20.
    Kindermann, M., Nazarov, Y.V.: Full counting statistics in electric circuits. In: Quantum Noise. Kluwer Academic, Dordrecht (2003) Google Scholar
  21. 21.
    Falkensteiner, P., Grosse, H.: Quantization of fermions interacting with point-like external fields. Lett. Math. Phys. 14, 139–148 (1987) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Albeverio, S., Kurasov, P.: Rank one perturbations of not semibounded operators. Integr. Equ. Oper. Theory 27, 379–400 (1997) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hassler, F., Suslov, M.V., Graf, G.M., Lebedev, M.V., Lesovik, G.B., Blatter, G.: Wave-packet formalism of full counting statistics. Phys. Rev. B 78, 165330 (2008) CrossRefADSGoogle Scholar
  24. 24.
    Avron, J.E., Bachmann, S., Graf, G.M., Klich, I.: Fredholm determinants and the statistics of charge transport. Commun. Math. Phys. 280, 807–829 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Kac, M.: Toeplitz matrices, translation kernels and a related problem in probability theory. Duke Math. J. 21(3), 501–509 (1954) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Akhiezer, N.I.: A functional analogue of some theorems on Toeplitz matrices. Am. Math. Soc. Transl. II 50, 295–316 (1966) MATHGoogle Scholar
  27. 27.
    Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin (2006) MATHGoogle Scholar
  28. 28.
    Lundberg, L.-E.: Quasi-free ‘Second quantization’. Commun. Math. Phys. 50, 103–112 (1976) MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Bayandin, K.V., Lebedev, A.V., Lesovik, G.B.: Measurement of high order current correlators. JETP 106, 117–129 (2008) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Theoretische PhysikETH ZürichZürichSwitzerland
  2. 2.Department of MathematicsUniversity of California at DavisDavisUSA
  3. 3.L.D. Landau Institute for Theoretical Physics RASMoscowRussia

Personalised recommendations