Journal of Statistical Physics

, Volume 138, Issue 4–5, pp 838–875

Well-Posedness and Large Time Behaviour for the Non-cutoff Kac Equation with a Gaussian Thermostat

Article

Abstract

We consider here a Kac equation with a Gaussian thermostat in the case of a non-cutoff cross section. Under the sole assumptions of finite mass and finite energy for the initial data, we prove the existence of a global in time solution for which mass and energy are preserved. Then, via Fourier transform techniques, we show that this solution is smooth, unique and converges to the corresponding stationary state.

Kac equation without cutoff Thermostat Existence Fourier transform Uniqueness Smoothness Large time behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bagland, V., Wennberg, B., Wondmagegne, Y.: Stationary states for the noncutoff Kac equation with a Gaussian thermostat. Nonlinearity 20, 583–604 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bonetto, F., Daems, D., Lebowitz, J.L.: Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas: the one particle system. J. Stat. Phys. 101, 35–60 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bonetto, F., Daems, D., Lebowitz, J.L., Ricci, V.: Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas: the multiparticle system. Phys. Rev. E 65, 051204 (2002) 9 pages CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199, 521–546 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 6(7), 75–198 (2007) MathSciNetGoogle Scholar
  7. 7.
    Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154, 569–601 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G.: Derivation of Ohm’s law in a deterministic mechanical model. Phys. Rev. Lett. 70, 2209–2212 (1993) CrossRefADSGoogle Scholar
  9. 9.
    Dellacherie, C., Meyer, P.A.: Probabilités et Potentiels. Hermann, Paris (1975). Chapitres I à IV Google Scholar
  10. 10.
    Desvillettes, L.: About the regularizing properties of the non-cut-off Kac equation. Commun. Math. Phys. 168, 417–440 (1995) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Desvillettes, L., Golse, F.: On the smoothing properties of a model Boltzmann equation without Grad’s cutoff assumption. In: Proceedings of the 21st International Symposium on Rarefied Gas Dynamics, vol. 1, pp. 47–54 (1999) Google Scholar
  12. 12.
    Desvillettes, L., Wennberg, B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Diff. Equs. 29, 133–155 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. CUP, Cambridge (2002) MATHGoogle Scholar
  15. 15.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Interscience Publishers, New York (1958) Google Scholar
  16. 16.
    Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York/Toronto/London (1965) MATHGoogle Scholar
  17. 17.
    Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London (1990) MATHGoogle Scholar
  18. 18.
    Evans, D.J., Hoover, Wm.G., Failor, B.H., Moran, B., Ladd, A.J.C.: Nonequilibrium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev. A 28, 1016–1021 (1983) CrossRefADSGoogle Scholar
  19. 19.
    Fournier, N.: Strict positivity of a solution to a one-dimensional Kac equation without cutoff. J. Stat. Phys. 99, 725–749 (2000) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gabetta, E., Pareschi, L.: About the non-cutoff Kac equation: uniqueness and asymptotic behaviour. Commun. Appl. Nonlinear Anal. 4, 1–20 (1997) MATHMathSciNetGoogle Scholar
  21. 21.
    Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81, 901–934 (1995) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Hoover, Wm.G.: Molecular Dynamics. Lecture Notes in Physics, vol. 258. Springer, Berlin (1986) Google Scholar
  23. 23.
    Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, Berkeley and Los Angeles, 1956, vol. III, pp. 171–197. University of California Press, Berkeley (1956) Google Scholar
  24. 24.
    Laurençot, Ph.: The Lifshitz-Slyozov equation with encounters. Math. Models Methods Appl. Sci. 11, 731–748 (2001) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lê Châu-Hoàn: Etude de la classe des opérateurs m-accrétifs de L 1(Ω) et accrétifs dans L (Ω). PhD thesis, Université de Paris VI (1977) Google Scholar
  26. 26.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Moran, B., Hoover, Wm.G., Bestiale, S.: Diffusion in a periodic Lorentz gas. J. Stat. Phys. 48, 709–726 (1987) MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Morris, G.P., Dettmann, C.P.: Thermostats: analysis and application. Chaos 8, 321–336 (1998) CrossRefADSGoogle Scholar
  29. 29.
    Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sundén, M., Wennberg, B.: Brownian approximation and Monte Carlo simulation of the non-cutoff Kac equation. J. Stat. Phys. 130, 295–312 (2008) MATHCrossRefADSGoogle Scholar
  31. 31.
    Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    van Beijeren, H., Dorfman, J.R., Cohen, E.G.D., Posch, H.A., Dellago, Ch.: Lyapunov exponents from kinetic theory for a dilute field driven Lorentz gas. Phys. Rev. Lett. 77, 1974–1977 (1996) ADSGoogle Scholar
  33. 33.
    Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions, 2nd edn. Longman Scientific and Technical, Harlow (1995) MATHGoogle Scholar
  34. 34.
    Wennberg, B., Wondmagegne, Y.: Stationary states for the Kac equation with a Gaussian thermostat. Nonlinearity 17, 633–648 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Wennberg, B., Wondmagegne, Y.: The Kac equation with a thermostatted force field. J. Stat. Phys. 124, 859–880 (2006) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Laboratoire de MathématiquesCNRS, UMR 6620AubiereFrance

Personalised recommendations