Journal of Statistical Physics

, 137:1040 | Cite as

Strongly Correlated Phases in Rapidly Rotating Bose Gases

  • Mathieu Lewin
  • Robert SeiringerEmail author


We consider a system of trapped spinless bosons interacting with a repulsive potential and subject to rotation. In the limit of rapid rotation and small scattering length, we rigorously show that the ground state energy converges to that of a simplified model Hamiltonian with contact interaction projected onto the Lowest Landau Level. This effective Hamiltonian models the bosonic analogue of the Fractional Quantum Hall Effect (FQHE). For a fixed number of particles, we also prove convergence of states; in particular, in a certain regime we show convergence towards the bosonic Laughlin wavefunction. This is the first rigorous justification of the effective FQHE Hamiltonian for rapidly rotating Bose gases. We review previous results on this effective Hamiltonian and outline open problems.


Bose-Einstein condensation Landau levels Scattering length Quantum Hall effect 


  1. 1.
    Aftalion, A., Blanc, X.: Vortex lattices in rotating Bose–Einstein condensates. SIAM J. Math. Anal. 38, 874–893 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aftalion, A., Blanc, X.: Reduced energy functionals for a three-dimensional fast rotating Bose-Einstein condensates. Ann. H. Poincaré 25, 339–355 (2008) zbMATHMathSciNetADSGoogle Scholar
  3. 3.
    Aftalion, A., Blanc, X., Dalibard, J.: Vortex patterns in a fast rotating Bose-Einstein condensate. Phys. Rev. A 71, 023611 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Aftalion, A., Blanc, X., Lewin, M.: Unpublished Google Scholar
  5. 5.
    Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241, 661–702 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Baksmaty, L.O., Yannouleas, C., Landman, U.: Rapidly rotating boson molecules with long- or short-range repulsion: an exact diagonalization study. Phys. Rev. A 75, 023620 (2007) CrossRefADSGoogle Scholar
  7. 7.
    Bargmann, V.: On the representations of the rotation group. Rev. Mod. Phys. 34, 829 (1962) zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bertsch, G., Papenbrock, T.: Yrast line for weakly interacting trapped bosons. Phys. Rev. Lett. 83, 5412–5414 (1999) CrossRefADSGoogle Scholar
  9. 9.
    Butts, D.A., Rokhsar, D.S.: Predicted signatures of rotating Bose-Einstein condensates. Nature 397, 327–329 (1999) CrossRefADSGoogle Scholar
  10. 10.
    Carlen, E.: Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97, 231–249 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008) CrossRefADSGoogle Scholar
  12. 12.
    Cooper, N.R., Komineas, S., Read, N.: Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates. Phys. Rev. A 70, 033604 (2004) CrossRefADSGoogle Scholar
  13. 13.
    Cooper, N.R., Wilkin, N.K.: Composite fermion description of rotating Bose-Einstein condensates. Phys. Rev. B 60, R16279–R16282 (1999) CrossRefADSGoogle Scholar
  14. 14.
    Cooper, N.R., Wilkin, N.K., Gunn, J.M.F.: Quantum phases of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001) CrossRefADSGoogle Scholar
  15. 15.
    Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999) CrossRefADSGoogle Scholar
  16. 16.
    Dyson, F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957) zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Girvin, S., Jach, T.: Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B 29, 5617–5625 (1984) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961) zbMATHCrossRefGoogle Scholar
  19. 19.
    Hussein, M., Vorov, O.: Generalized yrast states of a Bose-Einstein condensate in a harmonic trap for a universality class of interactions. Phys. Rev. A 65, 035603 (2002) CrossRefADSGoogle Scholar
  20. 20.
    Laughlin, R.B.: Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983) CrossRefADSGoogle Scholar
  21. 21.
    Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002) CrossRefADSGoogle Scholar
  22. 22.
    Lieb, E.H., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Lieb, E.H., Seiringer, R., Solovej, J.P.: Ground-state energy of the low-density Fermi gas. Phys. Rev. A 71, 053605 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars. Birkhäuser, Basel (2005) zbMATHGoogle Scholar
  25. 25.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000) CrossRefADSGoogle Scholar
  26. 26.
    Lieb, E.H., Seiringer, R., Yngvason, J.: One-dimensional behavior of dilute, trapped Bose gases. Commun. Math. Phys. 244, 347–393 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Yrast line of a rapidly rotating Bose gas: Gross-Pitaevskii regime. Phys. Rev. A 79, 063626 (2009) CrossRefADSGoogle Scholar
  28. 28.
    Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998) CrossRefADSGoogle Scholar
  29. 29.
    Mashkevich, S., Matveenko, S., Ouvry, S.: Exact results for the spectra of bosons and fermions with contact interaction. Nucl. Phys. B 763, 431–444 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Morris, A.G., Feder, D.L.: Validity of the Lowest Landau Level approximation for rotating Bose gases. Phys. Rev. A 74, 033605 (2006) CrossRefADSGoogle Scholar
  31. 31.
    Mottelson, B.: Yrast spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. Lett. 83, 2695–2698 (1999) CrossRefADSGoogle Scholar
  32. 32.
    Papenbrock, T., Bertsch, G.F.: Rotational spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. A 63, 023616 (2001) CrossRefADSGoogle Scholar
  33. 33.
    Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646–651 (1961) Google Scholar
  34. 34.
    Regnault, N., Chang, C.C., Jolicoeur, T., Jain, J.K.: Composite fermion theory of rapidly rotating two-dimensional bosons. J. Phys. B 39, S89–S99 (2006) CrossRefADSGoogle Scholar
  35. 35.
    Regnault, N., Jolicoeur, T.: Quantum hall fractions for spinless bosons. Phys. Rev. B 69, 235309 (2004) CrossRefADSGoogle Scholar
  36. 36.
    Regnault, N., Jolicoeur, T.: Parafermionic states in rotating Bose-Einstein condensates. Phys. Rev. B 76, 235324 (2007) CrossRefADSGoogle Scholar
  37. 37.
    Seiringer, R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A 36, 9755–9778 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Seiringer, R., Yin, J.: Ground state energy of the low density Hubbard model. J. Stat. Phys. 131, 1139–1154 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Seiringer, R., Yin, J.: The Lieb-Liniger model as a limit of dilute bosons in three dimensions. Commun. Math. Phys. 284, 459–479 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Viefers, S., Hansson, T.H., Reimann, S.M.: Bose condensates at high angular momenta. Phys. Rev. A 62, 053604 (2000) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.CNRS & Laboratoire de Mathématiques UMR 8088Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations