Advertisement

Journal of Statistical Physics

, Volume 136, Issue 6, pp 1035–1067 | Cite as

Constrained Markovian Dynamics of Random Graphs

  • A. C. C. Coolen
  • A. De MartinoEmail author
  • A. Annibale
Article

Abstract

We introduce a statistical mechanics formalism for the study of constrained graph evolution as a Markovian stochastic process, in analogy with that available for spin systems, deriving its basic properties and highlighting the role of the ‘mobility’ (the number of allowed moves for any given graph). As an application of the general theory we analyze the properties of degree-preserving Markov chains based on elementary edge switchings. We give an exact yet simple formula for the mobility in terms of the graph’s adjacency matrix and its spectrum. This formula allows us to define acceptance probabilities for edge switchings, such that the Markov chains become controlled Glauber-type detailed balance processes, designed to evolve to any required invariant measure (representing the asymptotic frequencies with which the allowed graphs are visited during the process). As a corollary we also derive a condition in terms of simple degree statistics, sufficient to guarantee that, in the limit where the number of nodes diverges, even for state-independent acceptance probabilities of proposed moves the invariant measure of the process will be uniform. We test our theory on synthetic graphs and on realistic larger graphs as studied in cellular biology, showing explicitly that, for instances where the simple edge swap dynamics fails to converge to the uniform measure, a suitably modified Markov chain instead generates the correct phase space sampling.

Keywords

Graph theory Stochastic processes Edge switching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawasaki, K.: Phys. Rev. 145, 224 (1966) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bray, A.: Adv. Phys. 43, 357 (1994) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Yook, S.H., Jeong, H., Barabasi, A.-L.: Phys. Rev. Lett. 86, 5835 (2001) CrossRefADSGoogle Scholar
  4. 4.
    Albert, R., Barabasi, A.-L.: Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Newman, M.E.J.: SIAM Rev. 45, 167 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dorogovtsev, S.N., Mendes, J.F.: Evolution of Networks. Oxford University Press, Oxford (2003) zbMATHGoogle Scholar
  7. 7.
    Newman, M.E.J.: Phys. Rev. E 70, 056131 (2004) CrossRefADSGoogle Scholar
  8. 8.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Rev. Mod. Phys. 80, 1275 (2008) CrossRefADSGoogle Scholar
  9. 9.
    Bianconi, G.: Phys. Rev. E 79, 039114 (2009) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bianconi, G., Coolen, A.C.C., Vicente, C.J.P.: Phys. Rev. E 78, 016114 (2009) CrossRefADSGoogle Scholar
  11. 11.
    Maslov, S., Sneppen, K., Zaliznyak, A.: Physica A 333, 529 (2004) CrossRefADSGoogle Scholar
  12. 12.
    Marsili, M., Slanina, F., Vega-Redondo, F.: Proc. Nat. Acad. Sci. 101, 1439 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Bianconi, G., Marsili, M.: Phys. Rev. E 70, 035105 (2004) CrossRefADSGoogle Scholar
  14. 14.
    Robins, G.L., Woolcock, J., Pattison, P.E.: Am. J. Soc. 110, 894 (2005) CrossRefGoogle Scholar
  15. 15.
    Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Nature Genet. 31, 64 (2002) CrossRefGoogle Scholar
  16. 16.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Science 298, 824 (2002) CrossRefADSGoogle Scholar
  17. 17.
    Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: arXiv:cond-mat/0312028v2
  18. 18.
    Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S.: Sociol. Methodol. 36, 99 (2006) CrossRefGoogle Scholar
  19. 19.
    Robins, G.L., Snijders, T.A.B., Wang, P., Handcock, M.S., Pattison, P.E.: Soc. Netw. 29, 192 (2007) CrossRefGoogle Scholar
  20. 20.
    Volz, E., Meyers, L.A.: Proc. R. Soc. B 274, 2925 (2007) CrossRefGoogle Scholar
  21. 21.
    Bender, E., Canfield, E.: J. Comb. Theory Ser. A 24, 296 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Molloy, M., Reed, B.: Random Struct. Algorithms 6, 161 (1995) zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001) CrossRefADSGoogle Scholar
  24. 24.
    Chung, F., Lu, L.: Proc. Natl. Acad. Sci. USA 99, 15879 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Rao, A.R., Jana, R., Bandyopadhya, S.: Indian J. Stat. 58, 225 (1996) zbMATHGoogle Scholar
  26. 26.
    Gkantsidis, C., Mihail, M., Zegura, E.: In: Proc. 5th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, New York (2003) Google Scholar
  27. 27.
    Viger, F., Latapy, M.: In: The Eleventh International Computing and Combinatorics Conference (COCOON 2005). LNCS, pp. 440–449. Springer, Berlin (2005) Google Scholar
  28. 28.
    Stauffer, A.O., Barbosa, V.C.: arXiv:cs/0512105v1
  29. 29.
    Chen, Y., Diaconis, P., Holmes, S., Liu, J.S.: J. Am. Stat. Assoc. 100, 109 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Catanzaro, M., Boguña, M., Pastor-Satorras, R.: Phys. Rev. E 71, 027103 (2005) CrossRefADSGoogle Scholar
  31. 31.
    Serrano, M.A., Boguña, M.: Phys. Rev. E 72, 036133 (2005) CrossRefADSGoogle Scholar
  32. 32.
    Foster, J.G., Foster, D.V., Grassberger, P., Paczuski, M.: Phys. Rev. E 76, 046112 (2007) CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Verhelst, N.D.: Psychometrika 73, 705 (2008) zbMATHCrossRefGoogle Scholar
  34. 34.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (2007) Google Scholar
  35. 35.
    Seidel, J.J.: A survey of two-graphs. In: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973). Tomo I. Atti dei Convegni Lincei, vol. 17, pp. 481–511. Accad. Naz. Lincei, Rome (1976) Google Scholar
  36. 36.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F., Samukhin, A.N.: Phys. Rev. E 68, 046109 (2003) CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Taylor, R.: In: McAvaney, K.L. (ed.) Combinatorial Mathematics VIII Springer Lect. Notes Math., vol. 884, p. 314. Springer, Berlin (1981) CrossRefGoogle Scholar
  38. 38.
    Eggleton, R.B., Holton, D.A.: In: McAvaney, K.L. (ed.) Combinatorial Mathematics VIII. Springer Lect. Notes Math., vol. 884, p. 155. Springer, Berlin (1981) CrossRefGoogle Scholar
  39. 39.
    Pérez-Vicente, C.J., Coolen, A.C.C.: J. Phys. A 41, 255003 (2008) CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Pérez-Vicente, C.J., Coolen, A.C.C.: J. Phys. A 42, 169801 (2009) CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Annibale, A., Coolen, A.C.C., Fernandes, L., Fraternali, F. Kleinjung, J.: Preprint. arXiv:0908.1759
  42. 42.
    Prasad, T.S.K., et al.: Human protein reference database (2008–2009) update. Nucleic Acids Res. 37, D767 (2009) CrossRefGoogle Scholar
  43. 43.
    Maslov, S., Sneppen, K.: Science 296, 910 (2002) CrossRefADSGoogle Scholar
  44. 44.
    Batada, N.N., Reguly, T., Breitkreutz, A., Boucher, L., Breitkreuz, B.J., Hurst, L.E.D., Tyers, M.: PLoS Biol. 4, 1720 (2006) CrossRefGoogle Scholar
  45. 45.
    Friedel, C.C., Zimmer, R.: BMC Bioinform. 8, 297 (2007) CrossRefGoogle Scholar
  46. 46.
    Park, J., Newman, M.E.J.: Phys. Rev. E 68, 026112 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. C. C. Coolen
    • 1
  • A. De Martino
    • 2
    Email author
  • A. Annibale
    • 1
  1. 1.Department of Mathematics and Randall DivisionKing’s College LondonLondonUK
  2. 2.CNR/INFM (SMC), Dipartimento di FisicaSapienza Università di RomaRomaItaly

Personalised recommendations