Journal of Statistical Physics

, 137:777 | Cite as

More is the Same; Phase Transitions and Mean Field Theories

Article

Abstract

This paper is the first in a series that will look at the theory of phase transitions from the perspectives of physics and the philosophy of science. The series will consider a group of related concepts derived from condensed matter and statistical physics. The key technical ideas go under the names of “singularity”, “order parameter”, “mean field theory”, “variational method”, “correlation length”, “universality class”, “scale changes”, and “renormalization”. The first four of these will be considered here.

In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor (steam) come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s.

A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in some statistical variable. The discontinuous property is called the order parameter. Each phase transition has its own order parameter. The possible order parameters range over a tremendous variety of physical properties. These properties include the density of a liquid-gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when the discontinuity in the jump approaches zero. This article is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of phase transition phenomena.

Much of the material in this review was first prepared for the Royal Netherlands Academy of Arts and Sciences in 2006. It has appeared in draft form on the authors’ web site (http://jfi.uchicago.edu/~leop/) since then.

The title of this article is a hommage to Philip Anderson and his essay “More is Different” (Sci. New Ser. 177(4047):393–396, 1972; N.-P. Ong and R. Bhatt (eds.) More is Different: Fifty Years of Condensed Matter Physics, Princeton Series in Physics, Princeton University Press, 2001) which describes how new concepts, not applicable in ordinary classical or quantum mechanics, can arise from the consideration of aggregates of large numbers of particles. Since phase transitions only occur in systems with an infinite number of degrees of freedom, such transitions are a prime example of Anderson’s thesis.

References

  1. 1.
    Anderson, P.W.: More is different. Sci. New Ser. 177(4047), 393–396 (1972) Google Scholar
  2. 2.
    Ong, N.-P., Bhatt, R. (eds.): More is Different: Fifty Years of Condensed Matter Physics. Princeton Series in Physics. Princeton University Press, Princeton (2001) Google Scholar
  3. 3.
    Van Till, H.J.: Basil, Augustine, and the Doctrine of Creation’s Functional Integrity. Sci. Christ. Belief 8(1), 21–38 (1996) Google Scholar
  4. 4.
    Ehrenfest, P.: Proc. K. Akad. Akad. Wet. Amst. 36, 147 (1933) Google Scholar
  5. 5.
    Daugherty, D.: Elaborating the crystal concept: scientific modeling and ordered states of matter. PhD Thesis, Committee on Conceptual and Historical Studies of Science, University of Chicago (2007) Google Scholar
  6. 6.
    Willard Gibbs, J.: Elementary Principles of Statistical Mechanics. Scribner’s, New York (1902) MATHGoogle Scholar
  7. 7.
    Bumstead, H.A., Van Name, R.G. (eds.): Scientific Papers of J. Willard Gibbs, 2 vols. (1961). ISBN 0918024773 Google Scholar
  8. 8.
    Domb, C.: The Critical Point. Taylor & Francis, London (1996) Google Scholar
  9. 9.
    Ising, E.: Z. Phys. 31, 253 (1925) CrossRefADSGoogle Scholar
  10. 10.
    Brush, S.G.: History of the Lenz-Ising Model. Rev. Mod. Phys. 39, 883–893 (1967) CrossRefADSGoogle Scholar
  11. 11.
    Gallavotti, G.: Entropy, nonequilibrium, chaos and infinitesmals, p. 54 in [12] Google Scholar
  12. 12.
    Gallavotti, G., Reiter, W.L., Ygnvason, J. (eds.): Boltzmann’s Legacy. European Mathematical Society (2008) Google Scholar
  13. 13.
    Wightman, A.: On the prescience of J. Willard Gibbs. In Caldi, D.G., Mostow, G.D. (eds.) Proceedings of the Gibbs Symposium, Yale University May 15–17, 1989. American Mathematical Society and American Institute of Physics (1989) Google Scholar
  14. 14.
    Uhlenbeck, G.E.: Some historical and critical remarks about the theory of phase transitions. In: Fujita, S. (ed.) Science of Matter: Festschrift in Honor of Professor Ta-You Wu. Gordon & Breach, New York (1978) Google Scholar
  15. 15.
    Cohen, E.G.D.: Private communication Google Scholar
  16. 16.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1969) MATHGoogle Scholar
  17. 17.
    Dunkel, J., Hilbert, S.: Phase transition in small systems: microcanonical vs. canonical ensembles. arXiv:cond-mat/0511501v4
  18. 18.
  19. 19.
    Peierls, R.: Proc. Camb. Philos. Soc. 32, 477 (1936) MATHCrossRefGoogle Scholar
  20. 20.
    Griffiths, R.: Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet. Phys. Rev. 136, A437–A439 (1964) CrossRefADSGoogle Scholar
  21. 21.
    Batterman, R.W.: Idealization and Modeling. Synthesis doi:10.1007. http://www.romanfrigg.org/Links/MS1/Synthese_MS1_Batterman.pdf
  22. 22.
    Batterman, R.W.: The Devil in the Details. Oxford University Press, New York (2002) MATHGoogle Scholar
  23. 23.
    Berry, M.V.: Asymptotics, singularities and the reduction of theories. In: Prawitz, D., Skyrms, B., Westerstahl, D. (eds.) Proc. 9th Int. Cong. Logic, Method., and Phil. of Sci., vol. IX, pp. 597-607 (1994) Google Scholar
  24. 24.
    Curie, P.: Ann. Chem. Phys. 5, 289 (1895) Google Scholar
  25. 25.
    Weiss, P.: J. Phys. 6, 661 (1907) Google Scholar
  26. 26.
    Maxwell, J.C.: Nature 10, 407 (1874) 11 418 (1875) CrossRefGoogle Scholar
  27. 27.
    Onsager, L.: Phys. Rev. 65, 117 (1944) MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Yang, C.N.: Phys. Rev. 85, 808 (1952) MATHCrossRefADSGoogle Scholar
  29. 29.
    van der Waals, J.D.: Thesis Leiden (1873) Google Scholar
  30. 30.
  31. 31.
    Sengers, J.L.: How Fluids Unmix. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam (2002) MATHGoogle Scholar
  32. 32.
    Andrews, T.: On the continuity of the gaseous and liquid states of matter. Philos. Trans. R. Soc. 159, 575–590 (1869). Reprinted in: T. Andrews, The Scientific Papers. Macmillan, London (1889) CrossRefGoogle Scholar
  33. 33.
    Nagel, E.: The Structure of Science. Routledge & Kegan Paul, London (1961) Google Scholar
  34. 34.
    Batterman, R.W.: Reduction. In: Bouchart, D. (ed.) Encyclopedia of Philosophy, 2nd edn. Macmillan, Detroit (2006) Google Scholar
  35. 35.
    Schrödinger, E.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1957) MATHGoogle Scholar
  36. 36.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 1st. edn. University of Chicago Press, Chicago (1962) Google Scholar
  37. 37.
    Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934) CrossRefADSGoogle Scholar
  38. 38.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957) MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Néel, L.: Propriétées magnétiques des ferrites; Férrimagnétisme et antiferromagnétisme. Ann. Phys. Paris 3, 137–198 (1948) Google Scholar
  41. 41.
    Griffin, A.: arXiv:cond-mat/9901123v1, 13 Jan 1999
  42. 42.
    Landau, L.D.: Phys. Z. Sow. 11, 26545 (1937). English Translation: Collected Papers of Landau, L.D., ter Haar, D. (eds.), pp. 193–215. Pergamon Press, Oxford (1965) Google Scholar
  43. 43.
    Kadanoff, L.P., Gotze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Palciauskas, V.V., Rayl, M., Swift, J., Aspnes, D., Kane, J.W.: Static Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 39, 395 (1967) CrossRefADSGoogle Scholar
  44. 44.
    Milton, K.A., Schwinger, J.: Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators: Including Seminal Papers of Julian Schwinger. Springer, Berlin (2006). ISBN:3540292233 Google Scholar
  45. 45.
    Galison, P.: Image and Logic: A Material Culture of Microphysics, p. 820. University of Chicago Press, Chicago (1997). ISBN 0226279170, 9780226279176 Google Scholar
  46. 46.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw–Hill, New York (1965). ISBN 0-07-020650-3 MATHGoogle Scholar
  47. 47.
    Feynman, R.P.: Slow Electrons in a Polar Crystal. Phys. Rev. 97, 660 (1955) MATHCrossRefADSGoogle Scholar
  48. 48.
    Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amst. 17, 793 (1914) Google Scholar
  49. 49.
    Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amst. 18, 1520 (1916) Google Scholar
  50. 50.
    Ginzburg, V.L., Landau, L.D.: J. Exp. Theor. Phys. 20, 1064 (1950) Google Scholar
  51. 51.
    Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174 (1957) Google Scholar
  52. 52.
    Landau, L.D.: J. Exp. Theor. Phys. 5, 71 (1941) Google Scholar
  53. 53.
    Green, M.S., Sengers, J.V. (eds.): Critical Phenomena. Proceedings of a Conference Held in Washington, D.C., April 1965, United States Department of Commerce, National Bureau of Standards (1965) Google Scholar
  54. 54.
    Fisher, M.E.: The theory of equilibrium critical phenomena. Rep. Prog. Phys. XXX(II), 615 (1967) CrossRefADSGoogle Scholar
  55. 55.
    Heller, P.: Experimental investigations of critical phenomena. Rep. Prog. Phys. XXX(II), 731 (1967) CrossRefADSGoogle Scholar
  56. 56.
    Patashinskii, A.Z., Pokrovskii, V.L.: Sov. Phys. JETP 19, 667 (1964) MathSciNetGoogle Scholar
  57. 57.
    Widom, B.: J. Chem. Phys. 43, 3892 (1965) CrossRefADSGoogle Scholar
  58. 58.
    Widom, B.: J. Chem. Phys. 43, 3896 (1965) ADSGoogle Scholar
  59. 59.
    Patashinskii, A.Z., Pokrovskii, V.L.: Fluctuation Theory of Phase Transitions. Elsevier, Amsterdam (1979) Google Scholar
  60. 60.
    Kadanoff, L.: Physics 2, 263 (1966) Google Scholar
  61. 61.
    Stueckelberg, E.C.G., Peterman, A.: Helv. Phys. Acta 26, 499 (1953) MATHMathSciNetGoogle Scholar
  62. 62.
    Gell-Mann, M., Low, F.E.: Phys. Rev. 95, 1300 (1954) MATHCrossRefMathSciNetADSGoogle Scholar
  63. 63.
    Wilson, K.G.: Phys. Rev. B 4, 3174 (1971) CrossRefADSGoogle Scholar
  64. 64.
    Wilson, K.G.: Phys. Rev. B 4, 3184 (1971) CrossRefADSGoogle Scholar
  65. 65.
    Cao, T.Y. (ed.): Conceptual Foundations of Quantum Field Theory. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  66. 66.
    Rukeyser, M.: Willard Gibbs: American Genius. Ox Bow Press, Woodbridge (1942). ISBN 0918024579 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations