Journal of Statistical Physics

, Volume 136, Issue 4, pp 715–732 | Cite as

Single-Speed Molecular Dynamics of Hard Parallel Squares and Cubes

  • W. G. Hoover
  • Carol G. Hoover
  • Marcus N. Bannerman
Open Access
Article

Abstract

The fluid and solid equations of state for hard parallel squares and cubes are reinvestigated here over a wide range of densities. We use a novel single-speed version of molecular dynamics. Our results are compared with those from earlier simulations, as well as with the predictions of the virial series, the cell model, and Kirkwood’s many-body single-occupancy model. The single-occupancy model is applied to give the absolute entropy of the solid phases just as was done earlier for hard disks and hard spheres. As we should expect, the excellent agreement found here with all relevant previous work shows very clearly that configurational properties, such as the equation of state, do not require the maximum-entropy Maxwell-Boltzmann velocity distribution. For both hard squares and hard cubes the free-volume theory provides a good description of the high-density solid-phase pressure. Hard parallel squares appear to exhibit a second-order melting transition at a density of 0.79 relative to close-packing. Hard parallel cubes have a more complicated equation of state, with several relatively-gentle curvature changes, but nothing so abrupt as to indicate a first-order melting transition. Because the number-dependence for the cubes is relatively large the exact nature of the cube transition remains unknown.

Keywords

Molecular dynamics Computational methods Melting transition 

References

  1. 1.
    Zwanzig, R.W.: Virial coefficients of parallel square and parallel cube gases. J. Chem. Phys. 24, 855–856 (1956) CrossRefADSGoogle Scholar
  2. 2.
    Hoover, W.G., De Rocco, A.G.: Sixth virial coefficients for gases of parallel hard lines, squares, and cubes. J. Chem. Phys. 34, 1059–1060 (1961) CrossRefADSGoogle Scholar
  3. 3.
    Hoover, W.G., De Rocco, A.G.: Sixth and seventh virial coefficients for the parallel hard cube model. J. Chem. Phys. 36, 3141–3162 (1962) CrossRefADSGoogle Scholar
  4. 4.
    Hoover, W.G., Alder, B.J.: Studies in molecular dynamics, IV. The pressure, collision rate, and their number dependence for hard disks. J. Chem. Phys. 46, 686–691 (1967) CrossRefADSGoogle Scholar
  5. 5.
    Carlier, C., Frisch, H.L.: Molecular dynamics of hard parallel squares. Phys. Rev. A 6, 1153–1161 (1972) CrossRefADSGoogle Scholar
  6. 6.
    Ree, F.H., Ree, T.: Statistical mechanics of the parallel hard squares in canonical ensemble. J. Chem. Phys. 56, 5434–5444 (1972) CrossRefADSGoogle Scholar
  7. 7.
    Frisch, H.L., Roth, J., Krawchuk, B.D., Sofinski, P.: Molecular dynamics of nonergodic hard parallel squares with a Maxwellian velocity distribution. Phys. Rev. A 22, 740–744 (1980) CrossRefADSGoogle Scholar
  8. 8.
    Lee, Y.S., Chae, D.G., Ree, T., Ree, F.H.: Computer simulations of a continuum system of molecules with a hard-core interaction in the grand canonical ensemble. J. Chem. Phys. 74, 6881–6887 (1981) CrossRefADSGoogle Scholar
  9. 9.
    van Swol, F., Woodcock, L.V.: Percolation transition in the parallel hard cube model fluid. Mol. Simul. 1, 95–108 (1987) CrossRefGoogle Scholar
  10. 10.
    Hoover, W.G., Ree, F.H.: Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617 (1968) CrossRefADSGoogle Scholar
  11. 11.
    Wood, W.W., Jacobsen, J.D.: Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207 (1957) CrossRefADSGoogle Scholar
  12. 12.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208 (1957) CrossRefADSGoogle Scholar
  13. 13.
    Jagla, E.A.: Melting of hard cubes. Phys. Rev. E 58, 4701–4705 (1998) CrossRefADSGoogle Scholar
  14. 14.
    Groh, B., Mulder, B.: A closer look at crystallization of parallel hard cubes. J. Chem. Phys. 114, 3653–3658 (2001) CrossRefADSGoogle Scholar
  15. 15.
    Mayer, J.E., Mayer, M.G.: Statistical Mechanics. Wiley, New York (1940) MATHGoogle Scholar
  16. 16.
    Hoover, Wm.G.: Computational Statistical Mechanics. Elsevier, Amsterdam (1991). Available at the homepage http://williamhoover.info/book.pdf Google Scholar
  17. 17.
    Ree, F.H., Hoover, W.G.: Seventh virial coefficients for hard spheres and hard disks. J. Chem. Phys. 46, 4181–4197 (1967) CrossRefADSGoogle Scholar
  18. 18.
    Clisby, N., McCoy, B.M.: Ninth and tenth order virial coefficients for hard spheres in D dimensions. J. Stat. Phys. 122, 15–57 (2005) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Hoover, W.G., Ashurst, W.T., Grover, R.: Exact dynamical basis for a fluctuating cell model. J. Chem. Phys. 57, 1259–1262 (1972) CrossRefADSGoogle Scholar
  20. 20.
    Hoover, W.G., Hoover, N.E., Hanson, K.: Exact hard-disk free volumes. J. Chem. Phys. 70, 1837–1844 (1979) CrossRefADSGoogle Scholar
  21. 21.
    Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936) MATHCrossRefADSGoogle Scholar
  22. 22.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: The Molecular Theory of Gases and Liquids. Wiley, New York (1954). Chap. 4 MATHGoogle Scholar
  23. 23.
    Kirkwood, J.G.: Critique of the free volume theory of the liquid state. J. Chem. Phys. 18, 380–382 (1950) CrossRefADSGoogle Scholar
  24. 24.
    Beyerlein, A.L., Rudd, W.G., Salsburg, Z.W., Buynoski, M.: Hard-square solids at high densities. J. Chem. Phys. 53, 1532–1540 (1970) CrossRefADSGoogle Scholar
  25. 25.
    Hoover, W.G., Ree, F.H.: Use of computer experiments to locate the melting transition and calculate the entropy in the solid phase. J. Chem. Phys. 47, 4873–4878 (1967) CrossRefADSGoogle Scholar
  26. 26.
    Hoover, W.G.: Entropy for small classical crystals. J. Chem. Phys. 49, 1981–1982 (1968) CrossRefADSGoogle Scholar
  27. 27.
    Bannerman, M., Hoover, W.G., Hoover, C.G., Lue, L.: (in preparation) Google Scholar
  28. 28.
    Hoover, Wm.G., Hoover, C.G.: Nonlinear stresses and temperatures in transient adiabatic and shear flows via nonequilibrium molecular dynamics: three definitions of temperature. Phys. Rev. E 79, 046705 (2009) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • W. G. Hoover
    • 1
  • Carol G. Hoover
    • 1
  • Marcus N. Bannerman
    • 2
  1. 1.Ruby Valley Research InstituteRuby ValleyUSA
  2. 2.School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK

Personalised recommendations