Journal of Statistical Physics

, Volume 136, Issue 3, pp 453–503 | Cite as

The Second Order Upper Bound for the Ground Energy of a Bose Gas

Article

Abstract

Consider N bosons in a finite box Λ=[0,L]3R3 interacting via a two-body smooth repulsive short range potential. We construct a variational state which gives the following upper bound on the ground state energy per particle
$$\overline{\lim}_{\rho\to0}\overline{\lim}_{L\to\infty,\,N/L^3\to \rho}\biggl(\frac{e_0(\rho)-4\pi a\rho}{(4\pi a)^{5/2}(\rho)^{3/2}}\biggr )\leq\frac{16}{15\pi^2},$$
where a is the scattering length of the potential. Previously, an upper bound of the form C16/15π2 for some constant C>1 was obtained in (Erdös et al. in Phys. Rev. A 78:053627, 2008). Our result proves the upper bound of the prediction by Lee and Yang (Phys. Rev. 105(3):1119–1120, 1957) and Lee et al. (Phys. Rev. 106(6):1135–1145, 1957).

Keywords

Bose gas Bogoliubov transformation Variational principle 

AMS Subject Classifications

82B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk USSR 11(1), 77 (1947) (in Russian) MathSciNetGoogle Scholar
  2. 2.
    Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. 11(1), 23–32 (1947) (in English) Google Scholar
  3. 3.
    Dyson, F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957) MATHCrossRefADSGoogle Scholar
  4. 4.
    Erdős, L., Schlein, B., Yau, H.-T.: Ground-state energy of a low-density Bose gas: A second-order upper bound. Phys. Rev. A 78, 053627 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Girardeau, M., Arnowitt, R.: Theory of many-boson systems: Pair theory. Phys. Rev. 113(3), 755–761 (1959) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density, arXiv:0811.1166v1 (2008)
  7. 7.
    Huang, K., Yang, C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105(3), 767–775 (1957) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Landau, L., Lifshitz, E.: Quantum Mechanics, Non-relativistic Theory, 3rd. edn. Pergamon, Elmsford (1991) Google Scholar
  9. 9.
    Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106(6), 1135–1145 (1957) MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Lee, T.D., Yang, C.N.: Many body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev. 105(3), 1119–1120 (1957) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Lieb, E.H.: Simplified approach to the ground state energy of an imperfect Bose gas. Phys. Rev. 130, 2518–2528 (1963). See also Phys. Rev. 133, A899–A906 (1964) (with A.Y. Sakakura) and Phys. Rev. 134, A312–A315 (1964) (with W. Liniger) CrossRefADSGoogle Scholar
  12. 12.
    Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Lieb, E.H., Solovej, J.P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252, 448–534 (2004) MathSciNetGoogle Scholar
  14. 14.
    Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998) CrossRefADSGoogle Scholar
  15. 15.
    Solovej, J.P.: Upper bounds to the ground state energies of the one- and two-component charged Bose gases. Comm. Math. Phys. 266(3), 797–818 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Yang, C.N.: Dilute hard “sphere” Bose gas in dimensions 2, 4 and 5, arXiv:0807.0938

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations