Journal of Statistical Physics

, Volume 136, Issue 3, pp 565–602 | Cite as

How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation

  • B. Cessac
  • H. Rostro
  • J. C. Vasquez
  • T. Viéville


This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials (“spike trains”) produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering “slow” synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.


Neurons dynamics Spike coding Statistical physics Gibbs distributions Thermodynamic formalism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, E., Zotterman, Y.: The impulses produced by sensory nerve endings: Part II: The response of a single end organ. J. Physiol. (Lond.) 61, 151–71 (1926) Google Scholar
  2. 2.
    Amit, D.J.: Modeling Brain Function—the World of Attractor Neural Networks. Cambridge University Press, Cambridge (1989) MATHGoogle Scholar
  3. 3.
    Arabzadeh, E., Panzeri, S., Diamond, M.: Deciphering the spike train of a sensory neuron: Counts and temporal patterns in the rat whisker pathway. J. Neurosci. 26(36), 9216–9226 (2006) CrossRefGoogle Scholar
  4. 4.
    Artola, A., Bröcher, S., Singer, W.: Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347(6288), 69–72 (1990) CrossRefADSGoogle Scholar
  5. 5.
    Barbieri, R., Frank, L.M., Nguyen, D.P., Quirk, M.C., Wilson, M.A., Brown, E.N.: Dynamic analyses of information encoding in neural ensembles. Neural Comput. 16, 277–307 (2004) MATHCrossRefGoogle Scholar
  6. 6.
    Beck, C., Schloegl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  7. 7.
    Bi, G., Poo, M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Ann. Rev. Neurosci. 24, 139–166 (2001) CrossRefGoogle Scholar
  8. 8.
    Bienenstock, E.L., Cooper, L., Munroe, P.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982) Google Scholar
  9. 9.
    Blanchard, P., Cessac, B., Krueger, T.: What can one learn about self-organized criticality from dynamical system theory? J. Stat. Phys. 98, 375–404 (2000) MATHCrossRefGoogle Scholar
  10. 10.
    Bliss, T., Gardner-Medwin, A.: Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374 (1973) Google Scholar
  11. 11.
    Bohte, S.M., Mozer, M.C.: Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput. 19(2), 371–403 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Springer, New York (1975) MATHGoogle Scholar
  13. 13.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Revised Version. Springer, New York (2008) Google Scholar
  14. 14.
    Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005) CrossRefGoogle Scholar
  15. 15.
    Cessac, B.: Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation. Nonlinearity 20, 2883–2895 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cessac, B.: A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. J. Math. Biol. 56(3), 311–345 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cessac, B., Samuelides, M.: From neuron to neural networks dynamics. EPJ Spec. Top. Top. Dyn. Neural Netw. 142(1), 7–88 (2007) Google Scholar
  18. 18.
    Cessac, B., Viéville, T.: On dynamics of integrate-and-fire neural networks with adaptive conductances. Front. Neurosci. 2(2) (2008) Google Scholar
  19. 19.
    Cessac, B., Blanchard, P., Krueger, T., Meunier, J.: Self-organized criticality and thermodynamic formalism. J. Stat. Phys. 115(516), 1283–1326 (2004) MATHCrossRefADSGoogle Scholar
  20. 20.
    Cessac, B., Vasquez, J., Viéville, T.: Parametric estimation of spike train statistics (2009, submitted) Google Scholar
  21. 21.
    Chazottes, J.: Entropie relative, dynamique symbolique et turbulence. Unpublished doctoral dissertation, Université de Provence—Aix Marseille I (1999) Google Scholar
  22. 22.
    Chazottes, J., Floriani, E., Lima, R.: Relative entropy and identification of Gibbs measures in dynamical systems. J. Stat. Phys. 90(3–4), 697–725 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Chazottes, J., Keller, G.: Pressure and equilibrium states in ergodic theory. In: Ergodic Theory. Springer, New York (2009) Google Scholar
  24. 24.
    Chechik, G.: Spike-timing-dependent plasticity and relevant mutual information maximization. Neural Comput. 15(7), 1481–1510 (2003) MATHCrossRefGoogle Scholar
  25. 25.
    Collet, P., Galves, A., Lopez, A.: Maximum likelihood and minimum entropy identification of grammars. Random Comput. Dyn. 3(3/4), 241–250 (1995) MATHGoogle Scholar
  26. 26.
    Comets, F.: Detecting phase transition for Gibbs measures. Ann. Appl. Probab. 7(2), 545–563 (1997) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Cooper, L., Intrator, N., Blais, B., Shouval, H.: Theory of Cortical Plasticity. World Scientific, Singapore (2004) MATHGoogle Scholar
  28. 28.
    Cronin, J.: Mathematical Aspects of Hodgkin-Huxley Theory. Cambridge University Press, Cambridge (1987) MATHGoogle Scholar
  29. 29.
    Daucé, E., Quoy, M., Cessac, B., Doyon, B., Samuelides, M.: Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Netw. 11, 521–33 (1998) CrossRefGoogle Scholar
  30. 30.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001) MATHGoogle Scholar
  31. 31.
    Dayan, P., Hausser, M.: In: Thrun, S., Saul, L., Schoelkopf, B. (eds.) Plasticity Kernels and Temporal Statistics, vol. 16. MIT Press, Cambridge (2004) Google Scholar
  32. 32.
    Delorme, A., Perrinet, L., Thorpe, S.: Networks of integrate-and-fire neurons using rank order coding b: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38(40), 539–45 (2001) CrossRefGoogle Scholar
  33. 33.
    Dudek, S., Bear, M.F.: Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13(7), 2910–2918 (1993) Google Scholar
  34. 34.
    FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955) CrossRefGoogle Scholar
  35. 35.
    FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961) CrossRefADSGoogle Scholar
  36. 36.
    Gao, Y., Kontoyiannis, I., Bienenstock, E.: Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy 10(2), 71–99 (2008) CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Georgeopoulos, A.P., Merchant, H., Naselaris, T., Amirikian, B.: Mapping of the preferred direction in the motor cortex. PNAS 104(26), 11068–11072 (2007) CrossRefADSGoogle Scholar
  38. 38.
    Georgopoulos, A., Kalaska, J., Caminiti, R., Massey, J.: On the relations between the direction of two-dimensional arm movements and cell discharge in primary motor cortex. J. Neurosci. 2, 1527–1537 (1982) Google Scholar
  39. 39.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  40. 40.
    Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002) MATHCrossRefGoogle Scholar
  41. 41.
    Grammont, F., Riehle, A.: Precise spike synchronization in monkey motor cortex involved in preparation for movement. Exp. Brain Res. 128, 118–122 (1999) CrossRefGoogle Scholar
  42. 42.
    Grammont, F., Riehle, A.: Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol. Cybern. 88, 360–373 (2003) MATHCrossRefGoogle Scholar
  43. 43.
    Guckenheimer, J., Labouriau, I.S.: Bifurcation of the Hodgkin-Huxley equations: a new twist. Bull. Math. Biol. 55, 937–952 (1993) MATHGoogle Scholar
  44. 44.
    Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949) Google Scholar
  45. 45.
    Hirsch, M.: Convergent activation dynamics in continuous time networks. Neural Netw. 2, 331–349 (1989) CrossRefGoogle Scholar
  46. 46.
    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952) Google Scholar
  47. 47.
    Izhikevich, E.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003) CrossRefMathSciNetGoogle Scholar
  48. 48.
    Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004) CrossRefGoogle Scholar
  49. 49.
    Izhikevich, E., Desai, N.: Relating stdp to bcm. Neural Comput. 15, 1511–1523 (2003) MATHCrossRefGoogle Scholar
  50. 50.
    Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957) CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Ji, C.: Estimating functionals of one-dimensional Gibbs states. Probab. Theory Relat. Fields 82(2), 155–175 (1989) MATHCrossRefGoogle Scholar
  52. 52.
    Johnson, D.: Sensory discrimination: neural processes preceding discrimination decision. J. Neurophysiol. 4(6), 1793–1815 (1980) Google Scholar
  53. 53.
    Johnson, D.: Neural population structure and consequences for neural coding. J. Comput. Neurosci. 16(1), 69–80 (2004) CrossRefGoogle Scholar
  54. 54.
    Jolivet, R., Rauch, A., Lescher, H.R., Gerstner, W.: Integrate-and-Fire Models with Adaptation Are Good Enough. MIT Press, Cambridge (2006) Google Scholar
  55. 55.
    Kang, K., Amari, S.I.: Discrimination with spike times and isi distributions. Neural Comput. 20, 1411–1426 (2008) MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Kluwer Academic, Dordrecht (1998) Google Scholar
  57. 57.
    Keller, G.: Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  58. 58.
    Levy, W., Stewart, D.: Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4), 791–797 (1983) CrossRefGoogle Scholar
  59. 59.
    Malenka, R.C., Nicoll, R.A.: Long-term potentiation—a decade of progress? Science 285(5435), 1870–1874 (1999) CrossRefGoogle Scholar
  60. 60.
    von-der Malsburg, C.: Self-organisation of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973) CrossRefGoogle Scholar
  61. 61.
    Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic ap and epsp. Science 275, 213 (1997) CrossRefGoogle Scholar
  62. 62.
    Meyer, D.: The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Physics, vol. 123. Springer, Berlin (1980) Google Scholar
  63. 63.
    Miller, K., Keller, J., Stryker, M.: Ocular dominance column development: analysis and simulation. Science 245(4918), 605–615 (1989) CrossRefADSGoogle Scholar
  64. 64.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962) CrossRefGoogle Scholar
  65. 65.
    Nemenman, I., Lewen, G., Bialek, W., de Ruyter van Steveninck, R.: Neural coding of a natural stimulus ensemble: Information at sub-millisecond resolution. PLoS Comput. Biol. 4, e1000025 (2006) CrossRefGoogle Scholar
  66. 66.
    Nirenberg, S., Latham, P.: Decoding neuronal spike trains: how important are correlations. Proc. Nat. Acad. Sci. 100(12), 7348–7353 (2003) CrossRefADSGoogle Scholar
  67. 67.
    Osbone, L., Palmer, S., Lisberger, S., Bialek, W.: Combinatorial coding in neural populations. arXiv:0803.3837 (2008)
  68. 68.
    Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, vols. 187–188. Asterisque (1990) Google Scholar
  69. 69.
    Perrinet, L., Delorme, A., Samuelides, M., Thorpe, S.: Networks of integrate-and-fire neuron using rank order coding a: how to implement spike time dependent Hebbian plasticity. Neurocomputing 38 (2001) Google Scholar
  70. 70.
    Rao, R., Sejnowski, T.J.: In: Solla, S., Leen, T., Muller, K. (eds.) Predictive Sequence Learning in Recurrent Neocortical Circuits, vol. 12. MIT Press, Cambridge (1991) Google Scholar
  71. 71.
    Rao, R., Sejnowski, T.J.: Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Comput. 13(10), 2221–2237 (2001) MATHCrossRefGoogle Scholar
  72. 72.
    Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes, Exploring the Neural Code. MIT Press, Cambridge (1996) MATHGoogle Scholar
  73. 73.
    Rostro-Gonzalez, H., Cessac, B., Vasquez, J., Viéville, T.: Back-engineering of spiking neural networks parameters. J. Comput. Neurosci. (2009, submitted) Google Scholar
  74. 74.
    Rudolph, M., Destexhe, A.: Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput. 18, 2146–2210 (2006) MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969) MATHGoogle Scholar
  76. 76.
    Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999) MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Samuelides, M., Cessac, B.: Random recurrent neural networks. Eur. Phys. J., Spec. Top. 142, 7–88 (2007) CrossRefGoogle Scholar
  78. 78.
    Schneidman, E., Berry, M., Segev, R., Bialek, W.: Weak pairwise correlations imply string correlated network states in a neural population. Nature 440, 1007–1012 (2006) CrossRefADSGoogle Scholar
  79. 79.
    Sinanović, A., Johnson, D.: Toward a theory of information processing. Signal Process. 87(6), 1326–1344 (2007) CrossRefGoogle Scholar
  80. 80.
    Siri, B., Berry, H., Cessac, B., Delord, B., Quoy, M.: Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J. Physiol. Paris 101(1–3), 138–150 (2007). arXiv:0706.2602 Google Scholar
  81. 81.
    Siri, B., Berry, H., Cessac, B., Delord, B., Quoy, M.: A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Neural Comput. 20(12), 12 (2008). arXiv:0705.3690v1 CrossRefMathSciNetGoogle Scholar
  82. 82.
    Soula, H.: Dynamique et plasticité dans les réseaux de neurones à impulsions. Unpublished doctoral dissertation, INSA Lyon (2005) Google Scholar
  83. 83.
    Soula, H., Beslon, G., Mazet, O.: Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput. 18, 1 (2006) CrossRefMathSciNetGoogle Scholar
  84. 84.
    Soula, H., Chow, C.C.: Stochastic dynamics of a finite-size spiking neural networks. Neural Comput. 19, 3262–3292 (2007) MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Theunissen, F., Miller, J.: Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162 (1995) CrossRefGoogle Scholar
  86. 86.
    Tkacik, G., Schneidman, E., Berry, M., Bialek, W.: Ising models for networks of real neurons. arXiv:q-bio/0611072 (2006)
  87. 87.
    Touboul, J.: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J. Appl. Math. 68(4), 1045–1079 (2008) MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Toyoizumi, T., Pfister, J.-P., Aihara, K., Gerstner, W.: Generalized Bienenstock-Cooper-Munroe rule for spiking neurons that maximizes information transmission. Proc. Nat. Acad. Sci. 102, 5239–5244 (2005) CrossRefADSGoogle Scholar
  89. 89.
    Toyoizumi, T., Pfister, J.-P., Aihara, K., Gerstner, W.: Optimality model of unsupervised spike-timing dependent plasticity: synaptic memory and weight distribution. Neural Comput. 19, 639–671 (2007) MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Wood, F., Roth, S., Black, M.: Modeling neural population spiking activity with Gibbs distributions. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1537–1544. MIT Press, Cambridge (2006) Google Scholar
  91. 91.
    Zou, Q.: Modèles computationnels de la plasticité impulsionnelle: synapses, neurones et circuits. Unpublished doctoral dissertation, Université Paris VI (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Cessac
    • 1
    • 2
  • H. Rostro
    • 2
  • J. C. Vasquez
    • 2
  • T. Viéville
    • 2
  1. 1.Laboratoire J.A. Dieudonné, U.M.R. C.N.R.S. N° 6621Université de Nice Sophia-AntipolisSophia-AntipolisFrance
  2. 2.INRIASophia-AntipolisFrance

Personalised recommendations