Journal of Statistical Physics

, Volume 136, Issue 1, pp 17–33 | Cite as

Correlation Functions for β=1 Ensembles of Matrices of Odd Size

  • Christopher D. SinclairEmail author


Using the method of Tracy and Widom we rederive the correlation functions for β=1 Hermitian and real asymmetric ensembles of N×N matrices with N odd.


Random matrix theory β=1 Correlation functions Asymmetric ensembles Ginibre’s real ensemble 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., Forrester, P.J., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1–2), 141–170 (2000) zbMATHCrossRefGoogle Scholar
  2. 2.
    Andréief, C.: Note sur une relation pour les intégrales défines des produits des fonctions. Mém. Soc. Sci. Bordeaux 2, 1–14 (1883) Google Scholar
  3. 3.
    Borodin, A., Sinclair, C.D.: Correlation functions of ensembles of asymmetric real matrices (2007). Accepted for publication in Commun. Math. Phys. Google Scholar
  4. 4.
    Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits (2008) Google Scholar
  5. 5.
    de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (NS) 19, 133–151 (1956) 1955 Google Scholar
  6. 6.
    Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Edelman, A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Forrester, P.: Log-gases and random matrices. Book in progress Google Scholar
  9. 9.
    Forrester, P., Mays, A.: A method to calculate correlation functions for β=1 random matrices of odd size. J. Stat. Phys. 134(3), 443–462 (2009) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99 (2007) Google Scholar
  11. 11.
    Forrester, P.J., Nagao, T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41(37), 375003 (2008) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965) zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Lehmann, N., Sommers, H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67, 941–944 (1991) zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Mahoux, G., Mehta, M.L.: A method of integration over matrix variables. IV. J. Phys. I 1(8), 1093–1108 (1991) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mehta, M.L.: A note on correlations between eigenvalues of a random matrix. Commun. Math. Phys. 20, 245–250 (1971) zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004) zbMATHGoogle Scholar
  17. 17.
    Rains, E.M.: Correlation functions for symmetrized increasing subsequences (2000) Google Scholar
  18. 18.
    Sinclair, C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007) Google Scholar
  19. 19.
    Sinclair, C.D.: The range of multiplicative functions on ℂ[x],ℝ[x] and ℤ[x]. Proc. Lond. Math. Soc. 96(3), 697–737 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sommers, H.-J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A 40(29), F671–F676 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Sommers, H.-J., Wieczorek, W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41(40), (2008) Google Scholar
  22. 22.
    Stembridge, J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations