Advertisement

Journal of Statistical Physics

, Volume 134, Issue 5–6, pp 1033–1057 | Cite as

The Eye of a Mathematical Physicist

  • Klaus HeppEmail author
Article

Abstract

In this essay we are searching for neural correlates of ‘doing mathematical physics’. We introduce a toy model of a mathematical physicist, a brain connected with the outside world only by vision and saccadic eye movements and interacting with a computer screen. First, we describe the neuroanatomy of the visuo-saccadic system and Listing’s law, which binds saccades and the optics of the eye. Then we explain space-time transformations in the superior colliculus, the performance of a canonical cortical circuit in the frontal eye field and finally the recurrent interaction of both areas, which leads to a coherent percept of space in spite of saccades. This sets the stage in the brain for doing mathematical physics, which is analyzed in simple examples.

Keywords

Brain mathematics Computational neuroscience Eye movements Vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aksay, E., Olasagasti, I., Mensh, B.D., Baker, R., Goldman, M.S., Tank, D.: Functional dissection of circuitry in a neural integrator. Nature Neurosci. 10, 494–450 (2007) Google Scholar
  2. 2.
    Albano, J.E., Mishkin, M., Westbrook, L.E., Wurtz, R.H.: Visuomotor deficits following ablation of monkey superior colliculus. J. Neurophysiol. 48, 338–351 (1982) Google Scholar
  3. 3.
    Andersen, R.A., Essick, G.K., Siegel, R.M.: The encoding of spatial location by posterior parietal neurons. Science 320, 456–458 (1985) ADSGoogle Scholar
  4. 4.
    Armstrong, K.M., Fitzgerald, J.K., Moore, T.: Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50, 791–798 (2006) Google Scholar
  5. 5.
    Bauby, J.-D.: Le Scaphandre et le Papillon. Laffont, Paris (1997) Google Scholar
  6. 6.
    Bays, P.M., Husain, M.: Spatial remapping of the visual world accross saccades. NeuroRep. 18, 1207–1213 (2007) Google Scholar
  7. 7.
    Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004) Google Scholar
  8. 8.
    Bruce, C.J., Goldberg, M.E.: Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985) Google Scholar
  9. 9.
    Bruce, C.J., Goldberg, M.E., Bushnell, M.C., Stanton, G.B.: Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985) Google Scholar
  10. 10.
    Byers, W.: How Mathematicians Think. Princeton University Press, Princeton (2007) zbMATHGoogle Scholar
  11. 11.
    Cantion, J.F., Brannon, E.M.: Basic math in monkeys and college students. PLoS Biol. 5, 2912–2919 (2007) Google Scholar
  12. 12.
    Changeux, J.-P., Connes, A.: Conversations on Mind, Matter, and Mathematics. Princeton University Press, Princeton (1998) Google Scholar
  13. 13.
    Colby, C.L., Goldberg, M.E.: Space and attention in parietal cortex. Ann. Rev. Neurosci. 22, 319–349 (1999) Google Scholar
  14. 14.
    Cox, D.D., Di Carlo, J.J.: Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J. Neurosci. 28, 10045–10055 (2008) Google Scholar
  15. 15.
    Cox, D.D., Meier, P., Oetelt, N., DiCarlo, J.J.: ‘Breaking’ position invariant object recognition. Nat. Neurosci. 8, 1145–1147 (2005) Google Scholar
  16. 16.
    Crawford, J.D.: Listing’s law: what’s all the hubbob? In: Harris, L.R., Jenkins, M. (eds.) Vision and Action. Cambridge University Press, Cambridge (1998) Google Scholar
  17. 17.
    Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topography. J. Comput. Neurol. 292, 497–523 (1990) Google Scholar
  18. 18.
    Davis, P.J., Hersh, R.: The Mathematical Experience. Birkhäuser, Boston (1980) zbMATHGoogle Scholar
  19. 19.
    Dehaene, S.: The Number Sense: How the Mind Creates Mathematics. Oxford University Press, London (1997) zbMATHGoogle Scholar
  20. 20.
    Dehaene, S., Changeux, J.-P.: Development of elementary numerical abilities: a neuronal model. J. Cogn. Neurosci. 5, 390–407 (1993) Google Scholar
  21. 21.
    Dehaene, S., Changeux, J.-P.: Ongoing spontaneous activity controls access to consciousness: a model for inattentional blindness. PLoS Biol. 3, 910–927 (2005) Google Scholar
  22. 22.
    Demer, J.L., Kono, R., Wright, W.: Magnetic resonance imaging of human extraocular muscles in convergence. J. Neurophysiol. 89, 2072–2085 (2003) Google Scholar
  23. 23.
    Descartes, R.: Oeuvres et lettres, Pléiade. Gallimard, Paris (1953) Google Scholar
  24. 24.
    Deubel, H., Schneider, W.X.: Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36, 1827–1837 (1996) Google Scholar
  25. 25.
    Diester, I., Nieder, A.: Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS Biol. 5, 2684–2695 (2007) Google Scholar
  26. 26.
    Diester, I., Nieder, A.: Complementary contributions of prefrontal neuron classes in abstract numerical catagorization. J. Neurosci. 28, 7737–7747 (2008) Google Scholar
  27. 27.
    Douglas, R.J., Martin, K.A.C.: A functional microcircuit for cat visual cortex. J. Phys. (Lond.) 440, 735–769 (1991) Google Scholar
  28. 28.
    Douglas, R.J., Martin, K.A.C.: Neuronal circuits of the neocortex. Ann. Rev. Neurosci. 27, 419–451 (2004) Google Scholar
  29. 29.
    Douglas, R.J., Martin, K.A.C.: Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007) Google Scholar
  30. 30.
    Douglas, R.J., Martin, K.A.C., Witteridge, D.: A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989) Google Scholar
  31. 31.
    Duhamel, J.-R., Colby, C.L., Goldberg, M.E.: The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992) ADSGoogle Scholar
  32. 32.
    Epshtein, B., Lifshitz, I., Ullman, S.: Image interpretation by a single bottom-up top-down cycle. Proc. Natl. Acad. Sci. USA 105, 14298–14303 (2008) ADSGoogle Scholar
  33. 33.
    Euclid (∼−300) Euclid’s Elements, Todhunter I. (ed.) Everyman’s Library, London (1933) Google Scholar
  34. 34.
    Everling, S., Paré, M., Dorris, M.C., Munoz, D.P.: Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implication for control of fixation and saccade behavior. J. Neurophysiol. 79, 511–528 (1998) Google Scholar
  35. 35.
    Fias, W., Lammertyn, J., Caessens, B., Orban, G.A.: Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. J. Neurosci. 27, 8952–8956 (2007) Google Scholar
  36. 36.
    Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends. Cogn. Sci. 9, 474–480 (2005) Google Scholar
  37. 37.
    Gawne, T.J., Martin, J.M.: Response of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. J. Neurophysiol. 88, 2178–2186 (2002) Google Scholar
  38. 38.
    Goossens, H.H.L.M., van Opstal, A.J.: Blink-perturbed saccades in monkey. I. Behavioral analysis. J. Neurophysiol. 83, 3411–3429 (2000) Google Scholar
  39. 39.
    Goossens, H.H.L.M., van Opstal, A.J.: Blink-perturbed saccades in monkey. II. Superior colliculus activity. J. Neurophysiol. 83, 3430–3452 (2000) Google Scholar
  40. 40.
    Goossens, H.H.L.M., Van Opstal, A.J.: Dynamic ensemble coding of saccades in the monkey superior colliculus. J. Neurophysiol. 95, 2326–2341 (2006) Google Scholar
  41. 41.
    Gotts, S.J., Gregoriou, G.G., Zhou, H., Desimone, R.: Synchronous activity within and between areas V4 and FEF in attention. Neuroscience Meeting, Atlanta #703.7 (2006) Google Scholar
  42. 42.
    Guthrie, B.L., Porter, J.D., Sparks, D.L.: Corollary discharge provides accurate eye position information to the oculomotor system. Science 221, 1193–1195 (1983) ADSGoogle Scholar
  43. 43.
    Hahnloser, R., Douglas, R.J., Mahowald, M., Hepp, K.: Feedback interactions between neuronal pointers and maps for attentional processing. Nature Neurosci. 2, 746–752 (1999) Google Scholar
  44. 44.
    Haslwanter, T., Straumann, D., Hepp, K., Hess, B.J.M., Henn, V.: Smooth pursuit eye movements obey Listing’s law in the monkey. Exp. Brain Res. 87, 470–872 (1991) Google Scholar
  45. 45.
    Heinzle, J.: A model of the local cortical circuit of the frontal eye fields. Diss ETHZ No. 16897 (2006) Google Scholar
  46. 46.
    Heinzle, J., Hepp, K., Martin, K.A.C.: A microcircuit model of the frontal eye fields. J. Neurosci. 27, 9341–9353 (2007) Google Scholar
  47. 47.
    Heinzle, J., Hepp, K., Martin, K.A.C.: A biologically realistic cortical model of eye movement control in reading. Submitted (2009) Google Scholar
  48. 48.
    Heiser, L.M., Colby, C.C.: Spatial updating in area LIP is independent of saccade direction. J. Neurophysiol. 95, 2751–2767 (2006) Google Scholar
  49. 49.
    Hepp, K.: On Listing’s law. Commun. Math. Phys. 132, 285–292 (1990) zbMATHADSMathSciNetGoogle Scholar
  50. 50.
    Hepp, K.: Theoretical explanations of Listing’s law and their implication for binocular vision. Vis. Res. 35, 3237–3242 (1995) Google Scholar
  51. 51.
    Hepp, K., van Opstal, A.J., Straumann, D., Hess, B.J.M., Henn, V.: Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. J. Neurophysiol. 69, 965–979 (1993) Google Scholar
  52. 52.
    Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Phys. Rev. 80, 953–978 (2000) Google Scholar
  53. 53.
    Hubbard, E.M., Piazza, M., Pinel, P., Dehaene, S.: Interactions between number and space in parietal cortex. Nature Rev. Neurosci. 6, 435–448 (2005) Google Scholar
  54. 54.
    Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977) ADSGoogle Scholar
  55. 55.
    Irwin, D.E.: Information integration across saccadic eye movements. Cogn. Psychol. 23, 420–456 (1991) Google Scholar
  56. 56.
    Izard, D., Dehaene-Lambertz, G., Dehaene, S.: Distinct cerebral pathways for object identity and number in human infants. PLoS Biol. 6, 275–285 (2008) Google Scholar
  57. 57.
    Kant, I.: Kritik der reinen Vernunft. Suhrkamp, Frankfurt (1787) (Weischedel, W., ed.). English translation by Guyer P., Wood A.W.: Critique of Pure Reason. Cambridge University Press, Cambridge (1998) Google Scholar
  58. 58.
    Kato, R., Grantyn, A., Dalezios, Y., Moschovakis, A.K.: The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience 143, 319–337 (2006) Google Scholar
  59. 59.
    Keller, E.L., Lee, K.-M., Park, S.-W., Hill, J.A.: The effect of inactivation of the cortical frontal eye field on saccades generated in a choice-response paradigm. J. Neurophysiol. 100, 2726–2737 (2008) Google Scholar
  60. 60.
    Khan, A.Z., Blangero, A., Rosetti, Y., Salemme, R., Luauté, J., Deubel, H., Schneider, W.X., Laverdure, N., Rode, G., Boisson, D., Pisella, L.: Parietal damage dissociates saccade planning from presaccadic perceptual facilitation. Cereb. Cortex 19, 383–387 (2009) Google Scholar
  61. 61.
    Klier, E.M., Wang, H., Crawford, J.D.: The superior colliculus encodes gaze commands in retinal coordinates. Nature Neurosci. 4, 627–632 (2001) Google Scholar
  62. 62.
    Krauzlis, R.J.: Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91, 591–603 (2004) Google Scholar
  63. 63.
    Krueger, F., Scampinato, M.V., Pardini, M., Pajevic, S., Wood, J.N., Weiss, G.H., Landgraf, S., Grafman, J.: Integral calculus problem solving: an fMRI investigation. NeuroReport 19, 1095–1099 (2008) CrossRefGoogle Scholar
  64. 64.
    Loetscher, T., Bockisch, C.J., Brugger, P.: Looking for the answer: the mind’s eye in number space. Neuroscience 151, 725–729 (2008) Google Scholar
  65. 65.
    Marino, R.A., Rodgers, C.K., Levy, R., Munoz, D.P.: The spatial representation of visuomotor transformations in the superior colliculus. J. Neurophysiol. 100, 2564–2576 (2008) Google Scholar
  66. 66.
    Markram, H.: The blue brain project. Nature Rev. Neurosci. 7, 153–160 (2006) Google Scholar
  67. 67.
    Marr, D.: Vision. Freeman, San Francisco (1982) Google Scholar
  68. 68.
    Mays, L.E., Sparks, D.L.: Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 43, 207–232 (1980) Google Scholar
  69. 69.
    McPeek, R.M.: Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. J. Neurophysiol. 96, 2699–2711 (2006) Google Scholar
  70. 70.
    McPeek, R.M., Han, J.H., Keller, E.L.: Competition between saccade goals in the superior colliculus produces saccade curvature. J. Neurophysiol. 89, 2577–2590 (2003) Google Scholar
  71. 71.
    Melcher, D., Colby, C.L.: Trans-saccadic perception. Trends Cogn. Sci. 12, 466-473 (2008) Google Scholar
  72. 72.
    Miller, J.M., Robins, D.: Extraocular muscle sideslip and orbital geometry in monkeys. Vis. Res. 27, 381–392 (1987) Google Scholar
  73. 73.
    Montale, E.: Tutte le poesie. Montadori, Milano (1977) Google Scholar
  74. 74.
    Müller, J.R., Mehta, A.B., Krauskopf, J., Lennie, P.: Information conveyed by onset transients in responses of striate cortical neurons. J. Neurosci. 21, 6978–6990 (2001) Google Scholar
  75. 75.
    Munoz, D.P., Everling, S.: Look away: the antisaccade task and the volontary control of movement. Nature Rev. Neurosci. 5, 218–228 (2004) Google Scholar
  76. 76.
    Munoz, D.P., Wurtz, R.H.: Fixation cells in monkey superior colliculus I. Characteristics of cell discharge. J. Neurophysiol. 70, 559–575 (1993) Google Scholar
  77. 77.
    Nakamura, K., Colby, C.L.: Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002) ADSGoogle Scholar
  78. 78.
    Newton, I.: Philosophiae Naturalis Principia Mathematica. Pepys, London (1687) Google Scholar
  79. 79.
    Nieder, A.: Counting on neurons: the neurobiology of numerical competence. Nature Rev. Neurosci. 6, 177–190 (2005) Google Scholar
  80. 80.
    Nieder, A., Diester, I., Tudusciuc, O.: Temporal and spatial enumeration processes in the primate parietal cortex. Science 313, 1431–1435 (2006) ADSGoogle Scholar
  81. 81.
    Nieder, A., Merten, K.: A labeled-line code for small and large numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993 (2007) Google Scholar
  82. 82.
    Nieder, A., Miller, E.K.: Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003) Google Scholar
  83. 83.
    Nieder, A., Miller, E.K.: A parieto-frontal network for visual numerical information in the monkey. Proc. Natl. Acad. Sci. USA 101, 7457–7462 (2004) ADSGoogle Scholar
  84. 84.
    Olshausen, B.A., Field, D.J.: How close are we to understanding V1? Neural Comput. 17, 1665–1699 (2005) zbMATHGoogle Scholar
  85. 85.
    Ottes, F.P., van Gisbergen, J.A.M., Eggermont, J.J.: Visuomotor fields of the superior colliculus: a quantitative model. Vis. Res. 26, 857–873 (1986) Google Scholar
  86. 86.
    Penrose, R.: Shadows of the Mind. Oxford University Press, New York (1995) zbMATHGoogle Scholar
  87. 87.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007) ADSGoogle Scholar
  88. 88.
    Piazza, M., Izard, V., Pinel, P., Le Bihan, D., Dehaene, S.: Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44, 547–555 (2004) Google Scholar
  89. 89.
    Piazza, M., Pinel, P., Le Bihan, D., Dehaene, S.: A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53, 293–305 (2007) Google Scholar
  90. 90.
    Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetic in a Amazonian indigene group. Science 306, 499–503 (2004) ADSGoogle Scholar
  91. 91.
    Prime, S.L., Tsotsos, L., Keith, G.P., Crawford, J.D.: Visual memory capacity in transsaccadic integration. Exp. Brain Res. 180, 609–628 (2007) Google Scholar
  92. 92.
    Rao, S.C., Rainer, G., Miller, E.K.: Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997) Google Scholar
  93. 93.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 1019–1025 (1999) Google Scholar
  94. 94.
    Robinson, D.A.: A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963) Google Scholar
  95. 95.
    Robinson, D.A.: Oculomotor unit behavior in the monkey. J. Neurophysiol. 33, 393–404 (1970) Google Scholar
  96. 96.
    Robinson, D.A.: Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12, 1795–1808 (1981) Google Scholar
  97. 97.
    Robinson, D.A.: The use of control systems analysis in the neurophysiology of eye movements. Ann. Rev. Neurosci. 4, 463–503 (1981) Google Scholar
  98. 98.
    Robinson, D.A.: Implications of neural networks for how we think about brain function. Behav. Brain Sci. 15, 644–553 (1992) Google Scholar
  99. 99.
    Robinson, D.A., Fuchs, A.F.: Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32, 637–648 (1969) Google Scholar
  100. 100.
    Roitman, J.D., Brannon, E.M., Platt, M.L.: Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biol. 5, 1672–1682 (2007) Google Scholar
  101. 101.
    Ruelle, D.: The Mathematician’s Brain. Princeton University Press, Princeton (2007) zbMATHGoogle Scholar
  102. 102.
    Salinas, E., Abbott, L.F.: A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. USA 93, 11956–11961 (1997) ADSGoogle Scholar
  103. 103.
    Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000) Google Scholar
  104. 104.
    Sato, T.R., Schall, J.D.: Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38, 637–648 (2003) Google Scholar
  105. 105.
    Scherberger, H., Cabungcal, J.-H., Hepp, K., Suzuki, Y., Straumann, D., Henn, V.: Ocular counterroll modulates the preferred direction of saccade-related burst neurons in the monkey. J. Neurophysiol. 86, 935–493 (2001) Google Scholar
  106. 106.
    Schiller, P., Stryker, M.: Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972) Google Scholar
  107. 107.
    Schiller, P.H., True, S.D., Conway, J.L.: Deficits in eye movements following frontal eye field and superior colliculus ablations. J. Neurophysiol. 44, 1175–1189 (1980) Google Scholar
  108. 108.
    Schnyder, H., Reisine, H., Hepp, K., Henn, V.: Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey. Brain Res. 329, 151–160 (1985) Google Scholar
  109. 109.
    Schultz, J.E., Hallowell, K.A., Ellis Jr., W., Kennedy, P.A., Engelbrecht, M., Rutkowsky, K.: Geometry. Holt, Rinehart & Winston, Austin (2001) Google Scholar
  110. 110.
    Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vis. Res. 20, 645–669 (1980) Google Scholar
  111. 111.
    Scudder, C.A.: A new local feedback model of the saccadic burst generator. J. Neurophysiol. 59, 1455–1475 (1988) Google Scholar
  112. 112.
    Scudder, C.A., Kaneko, C.R.S., Fuchs, A.F.: The brainstem burst generator for saccadic eye movements. A modern synthesis. Exp. Brain Res. 142, 439–462 (2002) Google Scholar
  113. 113.
    Segraves, M.A.: Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68, 1967–1985 (1992) Google Scholar
  114. 114.
    Sehatpour, P., Molholm, S., Schwartz, T.H., Mahoney, J.R., Mehta, A.D., Javitt, J.C., Stanton, P.K., Foxe, J.J.: A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proc. Natl. Acad. Sci. USA 105, 4399–4404 (2008) ADSGoogle Scholar
  115. 115.
    Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007) ADSGoogle Scholar
  116. 116.
    Siegel, M., Donner, T.H., Oostenveld, R., Fries, P., Engel, A.K.: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60, 709–719 (2008) Google Scholar
  117. 117.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 18, 555–586 (1995) Google Scholar
  118. 118.
    Sommer, M.A., Wurtz, R.H.: What the brainstem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91, 1403–1423 (2004) Google Scholar
  119. 119.
    Sommer, M.A., Wurtz, R.H.: What the brainstem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91, 1381–1402 (2004) Google Scholar
  120. 120.
    Sommer, M.A., Wurtz, R.H.: Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374–377 (2006) ADSGoogle Scholar
  121. 121.
    Sommer, M.A., Wurtz, R.H.: Brain circuits for the internal monitoring of movements. Ann. Rev. Neurosci. 31, 317–338 (2008) Google Scholar
  122. 122.
    Soon, C.S., Brass, M., Heinze, H.J., Haynes, J.D.: Unconscious determinants of free decisions in the human brain. Nature Neurosci. 11, 543–45 (2008) Google Scholar
  123. 123.
    Sparks, D.L.: Translation of sensory signals into commands for the control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66, 118–171 (1986) Google Scholar
  124. 124.
    Sparks, D.L.: The brainstem control of saccadic eye movements. Nature Rev. Neurosci. 3, 952–964 (2002) Google Scholar
  125. 125.
    Sparks, D.L., Mays, L.E.: Movement fields of saccade-ralated burst neurons in monkey superior colliculus. Brain Res. 190, 39–50 (1980) Google Scholar
  126. 126.
    Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comput. Physiol. Psychol. 43, 482–489 (1950) Google Scholar
  127. 127.
    Strassman, A., Highstein, S.M., McCrea, R.A.: Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J. Comput. Neurol. 249, 337–357 (1986) Google Scholar
  128. 128.
    Strassman, A., Highstein, S.M., McCrea, R.A.: Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. J. Comput. Neurol. 249, 358–380 (1986) Google Scholar
  129. 129.
    Synofzik, M., Lindner, A., Thier, P.: The cerebellum updates predictions about the visual consequences of one’s behavior. Current Biol. 18, 814–818 (2008) Google Scholar
  130. 130.
    Tanji, J., Hoshi, E.: Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 88, 37–57 (2008) Google Scholar
  131. 131.
    Thompson, K.G., Biscoe, K.L., Sato, T.R.: Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487 (2005) Google Scholar
  132. 132.
    Tolias, A.S., Moore, T., Smirnakis, S.M., Tehovnik, E.J., Siapas, A.G., Schiller, P.J.: Eye movements modlate visual receptive fields of V4 neurons. Neuron 29, 757–767 (2001) Google Scholar
  133. 133.
    Tootell, R.B.H., Switkes, E., Silverman, M.S., Hamilton, S.L.: Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8, 1531–1568 (1988) Google Scholar
  134. 134.
    Tudusciuc, O., Nieder, A.: Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. PNAS 104, 14513–14518 (2007) ADSGoogle Scholar
  135. 135.
    Tweed, D.: Visual-motor optimization in binocular control. Vis. Res. 37, 1939–1951 (1997) Google Scholar
  136. 136.
    Tweed, D., Vilis, T.: The superior colliculus and spatiotemporal translation in the saccadic system. Neural Netw. 3, 75–86 (1990) Google Scholar
  137. 137.
    Tweed, D., Fetter, M., Anreadaki, S., Koenig, E., Dichgans, J.: Three-dimensional properties of human pursuit eye movements. Vis. Res. 32, 1225–1238 (1992) Google Scholar
  138. 138.
    Umeno, M.M., Goldberg, M.E.: Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78, 1373–1383 (1997) Google Scholar
  139. 139.
    Umeno, M.M., Goldberg, M.E.: Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001) Google Scholar
  140. 140.
    van Gisbergen, J.A.M., Robinson, D.A., Gielen, S.: A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45, 417–442 (1981) Google Scholar
  141. 141.
    van Gisbergen, J.A.M., van Opstal, A.J., Tax, A.A.M.: Collicular ensemble coding of saccades based on vector summation. Neuroscience 21, 541–555 (1987) Google Scholar
  142. 142.
    van Opstal, A.J., Goossens, H.H.L.M.: Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics. Biol. Cybern. 98, 561–577 (2008) zbMATHGoogle Scholar
  143. 143.
    van Opstal, A.J., Hepp, K., Hess, B.J.M., Straumann, D., Henn, V.: Two- rather than three-dimensional representation of saccades in monkey superior colliculus. Science 252, 1313–1315 (1991) ADSGoogle Scholar
  144. 144.
    van Opstal, A.J., Hepp, K., Suzuki, Y., Henn, V.: Role of monkey nucleus reticularis tegmenti pontis in the stabilization of Listing’s plane. J. Neurosci. 15, 7284–7296 (1996) Google Scholar
  145. 145.
    Verguts, T., Fias, W.: Representation of number in animals and humans: a neural model. J. Cogn. Neurosci. 16, 1493–1504 (2004) Google Scholar
  146. 146.
    von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Leipzig (1867) Google Scholar
  147. 147.
    von Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Wechselwirkungen zwischen Centralnervensystem und Peripherie. Naturwissenschaften 37, 464–476 (1950) ADSGoogle Scholar
  148. 148.
    Walker, M.F., Fitzgibbon, E.J., Goldberg, M.E.: Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73, 1988–2003 (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETHZZürichSwitzerland

Personalised recommendations