Journal of Statistical Physics

, Volume 135, Issue 1, pp 25–55 | Cite as

Duality and Hidden Symmetries in Interacting Particle Systems

  • Cristian GiardinàEmail author
  • Jorge Kurchan
  • Frank Redig
  • Kiamars Vafayi
Open Access


In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the “hidden” symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the Kipnis-Marchioro-Presutti (KMP) model for which we unveil its SU(1,1) symmetry. The KMP model is in turn an instantaneous thermalization limit of the energy process associated to a large family of models of interacting diffusions, which we call Brownian energy process (BEP) and which all possess the SU(1,1) symmetry. We treat in details the case where the system is in contact with reservoirs and the dual process becomes absorbing.


Non-equilibrium statistical mechanics Interacting particle systems Duality 


  1. 1.
    Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: A constructive approach to Euler hydrodynamics for attractive processes. Application to k-step exclusion. Stoch. Process. Appl. 99, 1–30 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardin, C., Olla, S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121, 271 (2005) zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Cocozza, C., Kipnis, C.: Processus de vie et de mort sur R ou Z, avec interaction selon les particules les plus proches. C. R. Acad. Sci. Paris Sér. A–B 284, 1291 (1977) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986) zbMATHGoogle Scholar
  5. 5.
    Giardina, C., Kurchan, J.: The Fourier law in a momentum-conserving chain. J. Stat. Mech., P05009 (2005) Google Scholar
  6. 6.
    Giardina, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 033301 (2007) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Gwa, L.H., Spohn, H.: Bethe solution for the dynamic-scaling exponent of the noisy Burgers-equation. Phys Rev. A 46(2), 844–854 (1992) CrossRefADSGoogle Scholar
  8. 8.
    Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27(1), 65–74 (1982) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics. Classics in Mathematics. Springer, Berlin (2005). Reprint of the 1985 original Google Scholar
  10. 10.
    Möhle, M.: The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5(5), 761–777 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sandow, S.: Partially asymmetric exclusion process with open boundaries. Phys. Rev. E 50(4), 2660–2667 (1994) ADSGoogle Scholar
  12. 12.
    Sandow, S., Schütz, G.: On U q[SU(2)] symmetrical driven diffusion. Europhys. Lett. 26(1), 7–12 (1994) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Schütz, G., Sandow, S.: Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems. Phys. Rev. E 49, 2726–2741 (1994) CrossRefADSGoogle Scholar
  14. 14.
    Schütz, G.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86(5–6), 1265–1287 (1997) zbMATHCrossRefADSGoogle Scholar
  15. 15.
    Schütz, G.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transition and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, San Diego (2001) CrossRefGoogle Scholar
  16. 16.
    Schütz, G.: J. Stat. Phys. 86(5–6), 1265–1287 (1997) zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A 16, 4275–4291 (1983) ADSMathSciNetGoogle Scholar
  19. 19.
    Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin (2006). Reprint of the 1997 edition zbMATHGoogle Scholar
  20. 20.
    Taussky, O., Zassenhaus, H.: On the similarity transformation between a matrix and its transpose. Pac. J. Math. 9(3), 893–896 (1959) zbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Cristian Giardinà
    • 1
    Email author
  • Jorge Kurchan
    • 2
  • Frank Redig
    • 3
  • Kiamars Vafayi
    • 3
  1. 1.Department of Mathematics and Computer ScienceEindhoven UniversityEindhovenThe Netherlands
  2. 2.CNRS-Ecole Supérieure de Physique et de Chimie IndustriellesParisFrance
  3. 3.Mathematisch Instituut Universiteit LeidenLeidenThe Netherlands

Personalised recommendations