Journal of Statistical Physics

, Volume 134, Issue 1, pp 105–145 | Cite as

Bi-partite Entanglement Entropy in Massive QFT with a Boundary: the Ising Model

Article

Abstract

In this paper we give an exact infinite-series expression for the bi-partite entanglement entropy of the quantum Ising model in the ordered regime, both with a boundary magnetic field and in infinite volume. This generalizes and extends previous results involving the present authors for the bi-partite entanglement entropy of integrable quantum field theories, which exploited the generalization of the form factor program to branch-point twist fields. In the boundary case, we isolate in a universal way the part of the entanglement entropy which is related to the boundary entropy introduced by Affleck and Ludwig, and explain how this relation should hold in more general QFT models. We provide several consistency checks for the validity of our form factor results, notably, the identification of the leading ultraviolet behaviour both of the entanglement entropy and of the two-point function of twist fields in the bulk theory, to a great degree of precision by including up to 500 form factor contributions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennet, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996) CrossRefGoogle Scholar
  2. 2.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002) CrossRefGoogle Scholar
  3. 3.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-indepndent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004) CrossRefGoogle Scholar
  5. 5.
    Verstraete, F., Martin-Delgado, M.A., Cirac, J.I.: Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004) CrossRefGoogle Scholar
  6. 6.
    Cardy, J.L., Castro-Alvaredo, O.A., Doyon, B.: Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. J. Stat. Phys. 130, 129–168 (2007) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Castro-Alvaredo, O.A., Doyon, B.: Bi-partite entanglement entropy in integrable models with backscattering. J. Phys. A 41, 275203 (2008) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Doyon, B.: Bi-partite entanglement entropy in massive two-dimensional quantum field theory, 0803.1999 Google Scholar
  9. 9.
    Bombelli, L., Koul, R.K., Lee, J.-H., Sorkin, R.D.: A quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Callan, J., Curtis, G., Wilczek, F.: On geometric entropy. Phys. Lett. B 333, 55–61 (1994) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Calabrese, P., Cardy, J.L.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 0504, P010 (2005) Google Scholar
  12. 12.
    Karowski, M.: Exact S matrices and form-factors in (1+1)-dimensional field theoretic models with soliton behaviour. Phys. Rep. 49, 229–237 (1979) CrossRefADSGoogle Scholar
  13. 13.
    Zamolodchikov, A.B., Zamolodchikov, A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120, 253–291 (1979) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Abdalla, E., Abdalla, M.C.B., Rothe, K.D.: Non-perturbative Methods in Two-Dimensional Quantum Field Theory. World Scientific, Singapore (1991) Google Scholar
  15. 15.
    Mussardo, G.: Off critical statistical models: Factorized scattering theories and bootstrap program. Phys. Rep. 218, 215–379 (1992) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Dorey, P.: Exact S matrices. hep-th/9810026
  17. 17.
    Karowski, M., Weisz, P.: Exact S matrices and form-factors in (1+1)-dimensional field theoretic models with soliton behavior. Nucl. Phys. B 139, 455–476 (1978) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Smirnov, F.: Form Factors in Completely Integrable Models of Quantum Field Theory. Adv. Series in Math. Phys., vol. 14. World Scientific, Singapore (1992) MATHGoogle Scholar
  19. 19.
    Cherednik, I.V.: Factorizing particles on a half line and root systems. Theor. Math. Phys. 61, 977–983 (1984) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Fring, A., Köberle, R.: Affine Toda field theory in the presence of reflecting boundaries. Nucl. Phys. B 419, 647–664 (1994) MATHCrossRefGoogle Scholar
  22. 22.
    Ghoshal, S., Zamolodchikov, A.B.: Boundary S matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Mod. Phys. A 9, 3841–3886 (1994) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fring, A., Köberle, R.: Boundary bound states in affine Toda field theory. Int. J. Mod. Phys. A 10, 739–752 (1995) MATHCrossRefGoogle Scholar
  24. 24.
    Bowcock, P., Corrigan, E., Dorey, P.E., Rietdijk, R.H.: Classically integrable boundary conditions for affine Toda field theories. Nucl. Phys. B 445, 469–500 (1995) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Affleck, I., Ludwig, A.W.W.: Universal noninteger ‘ground state degeneracy’ in critical quantum systems. Phys. Rev. Lett. 67, 161–164 (1991) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Cardy, J.L., Lewellen, D.C.: Bulk and boundary operators in conformal field theory. Phys. Lett. B 259, 274–278 (1991) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Faddeev, L.D.: Quantum completely integral models of field theory. Sov. Sci. Rev. C 1, 107–155 (1980) Google Scholar
  28. 28.
    Jin, B.-Q., Korepin, V.: Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture. J. Stat. Phys. 116, 79–95 (2004) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Konik, R., LeClair, A., Mussardo, G.: On Ising correlation functions with boundary magnetic field. Int. J. Mod. Phys. A 11, 2765–2782 (1996) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Casini, H., Fosco, C.D., Huerta, M.: Entanglement and alpha entropies for a massive Dirac field in two dimensions. J. Stat. Mech. 0507, P007 (2005) Google Scholar
  31. 31.
    Casini, H., Huerta, M.: Entanglement and alpha entropies for a massive scalar field in two dimensions. J. Stat. Mech. 0512, P012 (2005) Google Scholar
  32. 32.
    Casini, H., Huerta, M.: A finite entanglement entropy and the c-theorem. Phys. Lett. B 600, 142–150 (2004) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Casini, H.: Geometric entropy, area, and strong subadditivity. Class. Quantum Gravity 21, 2351–2378 (2004) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Friedan, D., Konechny, A.: On the boundary entropy of one-dimensional quantum systems at low temperature. Phys. Rev. Lett. 93, 030402 (2004) CrossRefMathSciNetGoogle Scholar
  35. 35.
    Peschel, I.: On the entanglement entropy for a XY spin chain, J. Stat. Mech., P12005 (2004) Google Scholar
  36. 36.
    Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P002 (2004) MathSciNetGoogle Scholar
  37. 37.
    Zhou, H.-Q., Barthel, T., Fjærestad, J.O., Schollwöck, U.: Entanglement and boundary critical phenomena. Phys. Rev. A 74, 050305(R) (2006) Google Scholar
  38. 38.
    Iglói, F., Lin, Y.-C.: Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings, J. Stat. Mech., P06004 (2008) Google Scholar
  39. 39.
    Dorey, P., Lishman, A., Rim, C., Tateo, R.: Reflection factors and exact g-functions for purely elastic scattering theories. Nucl. Phys. B 744, 239–276 (2006) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Delfino, G., Simonetti, P., Cardy, J.L.: Asymptotic factorisation of form factors in two-dimensional quantum field theory. Phys. Lett. B 387, 327–333 (1996) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University LondonLondonUK
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations