Journal of Statistical Physics

, Volume 133, Issue 3, pp 405–415 | Cite as

The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion

  • Folkmar Bornemann
  • Patrik L. Ferrari
  • Michael Prähofer


Using a systematic approach to evaluate Fredholm determinants numerically, we provide convincing evidence that the Airy1-process, arising as a limit law in stochastic surface growth, is not the limit law for the evolution of the largest eigenvalue in GOE matrix diffusion.


Random matrix theory Stochastic surface growth Airy processes Matrix diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., van Moerbeke, P.: PDEs for the joint distribution of the Dyson, Airy and sine processes. Ann. Probab. 33, 1326–1361 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bornemann, F.: On the numerical evaluation of Fredholm determinants. arXiv:0804.2543 (2008)
  3. 3.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. A Study in High-Accuracy Numerical Computing. Society of Industrial and Applied Mathematics, Philadelphia (2004) zbMATHGoogle Scholar
  4. 4.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Commun. Math. Phys. 283, 417–449 (2008) CrossRefADSGoogle Scholar
  6. 6.
    Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Ferrari, P.L.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Commun. Math. Phys. 252, 77–109 (2004) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Ferrari, P.L.: The universal Airy1 and Airy2 processes in the totally asymmetric simple exclusion process. In: Proceeding Integrable Systems and Random Matrices: In Honor of Percy Deift. Contemporary Mathematics, vol. 458, pp. 321–332 (2008) Google Scholar
  9. 9.
    Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38, L557–L561 (2005) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003) zbMATHADSMathSciNetGoogle Scholar
  11. 11.
    Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier (Grenoble) 55, 2129–2145 (2005) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000) CrossRefADSGoogle Scholar
  13. 13.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002) zbMATHCrossRefGoogle Scholar
  14. 14.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996) zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Widom, H.: On asymptotics for the Airy process. J. Stat. Phys. 115, 1129–1134 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Widom, H.: Private communication (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Folkmar Bornemann
    • 1
  • Patrik L. Ferrari
    • 2
  • Michael Prähofer
    • 1
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Weierstrass Institute, WIASBerlinGermany

Personalised recommendations