Journal of Statistical Physics

, Volume 133, Issue 1, pp 101–129 | Cite as

Asymptotic Behavior of the Magnetization Near Critical and Tricritical Points via Ginzburg–Landau Polynomials

  • Richard S. Ellis
  • Jonathan Machta
  • Peter Tak-Hun Otto
Article

Abstract

The purpose of this paper is to prove connections among the asymptotic behavior of the magnetization, the structure of the phase transitions, and a class of polynomials that we call the Ginzburg–Landau polynomials. The model under study is a mean-field version of a lattice spin model due to Blume and Capel. It is defined by a probability distribution that depends on the parameters β and K, which represent, respectively, the inverse temperature and the interaction strength. Our main focus is on the asymptotic behavior of the magnetization m(βn,Kn) for appropriate sequences (βn,Kn) that converge to a second-order point or to the tricritical point of the model and that lie inside various subsets of the phase-coexistence region. The main result states that as (βn,Kn) converges to one of these points (β,K), \(m(\beta_{n},K_{n})\sim \bar{x}|\beta -\beta_{n}|^{\gamma}\rightarrow 0\) . In this formula γ is a positive constant, and \(\bar{x}\) is the unique positive, global minimum point of a certain polynomial g. We call g the Ginzburg–Landau polynomial because of its close connection with the Ginzburg–Landau phenomenology of critical phenomena. For each sequence the structure of the set of global minimum points of the associated Ginzburg–Landau polynomial mirrors the structure of the set of global minimum points of the free-energy functional in the region through which (βn,Kn) passes and thus reflects the phase-transition structure of the model in that region. This paper makes rigorous the predictions of the Ginzburg–Landau phenomenology of critical phenomena and the tricritical scaling theory for the mean-field Blume–Capel model.

Keywords

Ginzburg–Landau phenomenology Second-order phase transition First-order phase transition Tricritical point Scaling theory Blume–Capel model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barber, M.N.: Finite-size scaling. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 8, pp. 145–266. Academic Press, London (1983) Google Scholar
  2. 2.
    Blume, M.: Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141, 517–524 (1966) CrossRefADSGoogle Scholar
  3. 3.
    Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the λ transition and phase separation in He3-He4 mixtures. Phys. Rev. A 4, 1071–1077 (1971) CrossRefADSGoogle Scholar
  4. 4.
    Bruce, A.D.: Probability density functions for collective coordinates in Ising-like systems. J. Phys. C: Solid State Phys. 14, 3667–3688 (1981) CrossRefADSGoogle Scholar
  5. 5.
    Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966–988 (1966) CrossRefADSGoogle Scholar
  6. 6.
    Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33, 295–331 (1967) CrossRefADSGoogle Scholar
  7. 7.
    Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting III Physica 37, 423–441 (1967) CrossRefADSGoogle Scholar
  8. 8.
    Capel, H.W., Den Ouden, L.W.J., Perk, J.H.H.: Stability of critical behaviour, critical-exponent renormalization and first-order transitions. Physica 95A, 371–416 (1979) ADSGoogle Scholar
  9. 9.
    Cardy, J.L. (ed.): Finite-Size Scaling. North-Holland, Amsterdam (1988) Google Scholar
  10. 10.
    Costeniuc, M., Ellis, R.S., Otto, P.T.-H.: Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. (2007) Google Scholar
  11. 11.
    Ellis, R.S.: Entropy, Large Deviations and Statistical Mechanics. Springer, New York (1985). Reprinted in 2006 in Classics in Mathematics MATHGoogle Scholar
  12. 12.
    Ellis, R.S., Machta, J., Otto, P.T.: Ginzburg–Landau polynomials and the asymptotic behavior of the magnetization near critical and tricritical points. Unpublished. http://arxiv.org/abs/0803.0178
  13. 13.
    Ellis, R.S., Machta, J., Otto, P.T.: Refined asymptotics of the spin and finite-size scaling of the magnetization (2008, in preparation) Google Scholar
  14. 14.
    Ellis, R.S., Otto, P.T., Touchette, H.: Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model. Ann. Appl. Prob. 15, 2203–2254 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ellis, R.S., Wang, K.: Limit theorems for the empirical vector of the Curie-Weiss-Potts model. Stoch. Proc. Appl. 35, 59–79 (1990) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, vol. 5, 3rd edn. Butterworth Heinemann, Oxford (1991) MATHGoogle Scholar
  17. 17.
    Den Ouden, L.W.J., Capel, H.W., Perk, J.H.H.: Systems with separable many-particle interactions. I. Physica 85A, 51–70 (1976) ADSGoogle Scholar
  18. 18.
    Den Ouden, L.W.J., Capel, H.W., Perk, J.H.H.: Systems with separable many-particle interactions. II. Physica 85A, 425–456 (1976) ADSGoogle Scholar
  19. 19.
    Perk, J.H.H., Capel, H.W., Den Ouden, L.W.J.: Convex-envelope formulation for separable many-particle interactions. Physica 89A, 555–568 (1977) ADSGoogle Scholar
  20. 20.
    Riedel, E.K.: Scaling approach to tricritical phase transitions. Phys. Rev. Lett. 28, 675–678 (1972) CrossRefADSGoogle Scholar
  21. 21.
    Riedel, E.K., Wegner, F.J.: Tricritical exponents and scaling fields. Phys. Rev. Lett. 29, 349–352 (1972) CrossRefADSGoogle Scholar
  22. 22.
    Rikvold, P.A., Kinzel, W., Gunton, J.D., Kaski, K.: Finite-size-scaling study of a two-dimensional lattice-gas model with a tricritical point. Phys. Rev. B 28, 2686–2692 (1983) CrossRefADSGoogle Scholar
  23. 23.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard S. Ellis
    • 1
  • Jonathan Machta
    • 2
  • Peter Tak-Hun Otto
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Department of PhysicsUniversity of MassachusettsAmherstUSA
  3. 3.Department of MathematicsWillamette UniversitySalemUSA

Personalised recommendations