Advertisement

Journal of Statistical Physics

, Volume 133, Issue 1, pp 59–78 | Cite as

Order of Current Variance and Diffusivity in the Rate One Totally Asymmetric Zero Range Process

  • Márton Balázs
  • Júlia Komjáthy
Article

Abstract

We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional interacting systems with one conserved quantity and concave hydrodynamic flux. The proof proceeds via couplings to show the corresponding moment bounds for a second class particle. We build on the methods developed in Balázs and Seppäläinen (Order of current variance and diffusivity in the asymmetric simple exclusion process, 2006) for simple exclusion. However, some modifications were needed to handle the larger state space. Our results translate into t 2/3-order of variance of the tagged particle on the characteristics of totally asymmetric simple exclusion.

Keywords

Constant rate totally asymmetric zero range process Diffusivity Current fluctuations Second class particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balázs, M.: Growth fluctuations in a class of deposition models. Ann. Inst. Henri Poincaré Probab. Stat. 39, 639–685 (2003) zbMATHCrossRefGoogle Scholar
  3. 3.
    Balázs, M., Seppäläinen, T.: Order of current variance and diffusivity in the asymmetric simple exclusion process. http://arxiv.org/abs/math.PR/0608400 (2006)
  4. 4.
    Balázs, M., Seppäläinen, T.: Exact connections between current fluctuations and the second class particle in a class of deposition models. J. Stat. Phys. 127(2), 431–455 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Balázs, M., Cator, E., Seppäläinen, T.: Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11, 1094–1132 (2006) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cator, E., Groeneboom, P.: Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab. 34(4) (2006) Google Scholar
  7. 7.
    Ferrari, P.A., Fontes, L.R.G.: Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22, 820–832 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265(1), 1–44 (2006) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999) zbMATHGoogle Scholar
  11. 11.
    Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: In And Out of Equilibrium (Mambucaba, 2000). Progr. Probab.,vol. 51, pp. 185–204. Birkhäuser, Boston (2002) Google Scholar
  12. 12.
    Quastel, J., Valkó., B.: A note on the diffusivity of finite-range asymmetric exclusion processes on ℤ. http://arxiv.org/abs/0705.2416 (2007)
  13. 13.
    Quastel, J., Valko, B.: t 1/3 Superdiffusivity of finite-range asymmetric exclusion processes on ℤ. Commun. Math. Phys. 273(2), 379–394 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54(18), 2026–2029 (1985). DOI: 10.1103/PhysRevLett.54.2026 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.MTA-BME Stochastics Research Group, Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.BME, Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations