Advertisement

Journal of Statistical Physics

, Volume 132, Issue 4, pp 603–626 | Cite as

Copolymers at Selective Interfaces: New Bounds on the Phase Diagram

  • Thierry Bodineau
  • Giambattista Giacomin
  • Hubert Lacoin
  • Fabio Lucio Toninelli
Article

Abstract

We investigate the phase diagram of disordered copolymers at the interface between two selective solvents, and in particular its weak-coupling behavior, encoded in the slope m c of the critical line at the origin. We focus on the directed walk case, which has turned out to be, in spite of the apparent simplicity, extremely challenging. In mathematical terms, the partition function of such a model does not depend on all the details of the Markov chain that models the polymer, but only on the time elapsed between successive returns to zero and on whether the walk is in the upper or lower half plane between such returns. This observation leads to a natural generalization of the model, in terms of arbitrary laws of return times: the most interesting case being the one of return times with power law tails (with exponent 1+α, α=1/2 in the case of the symmetric random walk). The main results we present here are:

  1. (1)

    the improvement of the known result 1/(1+α)≤m c ≤1, as soon as α>1 for what concerns the upper bound, and down to α≈0.65 for the lower bound.

     
  2. (2)

    a proof of the fact that the critical curve lies strictly below the critical curve of the annealed model for every non-zero value of the coupling parameter.

     
We also provide an argument that rigorously shows the strong dependence of the phase diagram on the details of the return probability (and not only on the tail behavior). Lower bounds are obtained by exhibiting a new localization strategy, while upper bounds are based on estimates of non-integer moments of the partition function.

Keywords

Directed polymers Disorder Copolymers at selective interfaces Rare-stretch strategies Fractional moment estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S., Zhou, X.Y.: Free energy and some sample path properties of a random walk with random potential. J. Stat. Phys. 83, 573–622 (1996) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Biskup, M., den Hollander, F.: A heteropolymer near a linear interface. Ann. Appl. Probab. 9, 668–687 (1999) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodineau, T., Giacomin, G.: On the localization transition of random copolymers near selective interfaces. J. Stat. Phys. 117, 801–818 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bolthausen, E., Caravenna, F., de Tilière, B.: The quenched critical point of a diluted disordered polymer model. arXiv:0711.0141 [math.PR]
  5. 5.
    Bolthausen, E., den Hollander, F.: Localization transition for a polymer near an interface. Ann. Probab. 25, 1334–1366 (1997) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bolthausen, E., den Hollander, F.: Private communication Google Scholar
  7. 7.
    Caravenna, F., Giacomin, G.: On constrained annealed bounds for pinning and wetting models. Electron. Commun. Probab. 10, 179–189 (2005) MATHMathSciNetGoogle Scholar
  8. 8.
    Caravenna, F., Giacomin, G., Gubinelli, M.: A numerical approach to copolymers at selective interfaces. J. Stat. Phys. 122, 799–832 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Causo, M.S., Whittington, S.G.: A Monte Carlo investigation of the localization transition in random copolymers at an interface. J. Phys. A Math. Gen. 36, L189–L195 (2003) CrossRefADSGoogle Scholar
  10. 10.
    Den Hollander, F., Pétrélis, N.: On the localized phase of a copolymer in an emulsion: supercritical percolation regime. Preprint, arXiv:0709:1659 (2007)
  11. 11.
    Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. arXiv:0712.2515 [math.PR]
  12. 12.
    Doney, R.A.: One-sided local large deviations and renewal theorems in the case of infinite mean. Probab. Theory Relat. Fields 107, 451–465 (1997) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2, 2nd edn. Wiley, New York (1971) MATHGoogle Scholar
  14. 14.
    Garel, T., Huse, D.A., Leibler, S., Orland, H.: Localization transition of random chains at interfaces. Europhys. Lett. 8, 9–13 (1989) CrossRefADSGoogle Scholar
  15. 15.
    Giacomin, G.: Random Polymer Models. IC Press/World Scientific, London (2007) MATHGoogle Scholar
  16. 16.
    Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. arXiv:0711.4649 [math.PR]
  17. 17.
    Giacomin, G., Toninelli, F.L.: Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Relat. Fields 133, 464–482 (2005) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Giacomin, G., Toninelli, F.L.: The localized phase of disordered copolymers with adsorption. ALEA 1, 149–180 (2006) MATHMathSciNetGoogle Scholar
  19. 19.
    Giacomin, G., Toninelli, F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Habibzadah, N., Iliev, G.K., Martin, R., Saguia, A., Whittington, S.G.: The order of the localization transition for a random copolymer. J. Phys. A Math. Gen. 39, 5659–5667 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Iliev, G., Rechnitzer, A., Whittington, S.G.: Localization of random copolymers and the Morita approximation. J. Phys. A Math. Gen. 38, 1209–1223 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Monthus, C.: On the localization of random heteropolymers at the interface between two selective solvents. Eur. Phys. J. B 13, 111–130 (2000) ADSGoogle Scholar
  23. 23.
    Monthus, C., Garel, T.: Delocalization transition of the selective interface model: distribution of pseudo-critical temperatures, J. Stat. Mech., P12011 (2005) Google Scholar
  24. 24.
    Sinai, Ya.G.: A random walk with a random potential. Theory Probab. Appl. 38, 382–385 (1993) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Soteros, C.E., Whittington, S.G.: The statistical mechanics of random copolymers. J. Phys. A Math. Gen. 37, R279–R325 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Stepanow, S., Sommer, J.-U., Ya, I.: Erukhimovich, Localization transition of random copolymers at interfaces. Phys. Rev. Lett. 81, 4412–4416 (1998) CrossRefADSGoogle Scholar
  27. 27.
    Toninelli, F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. (to appear). arXiv:0709.1629v1 [math.PR]
  28. 28.
    Trovato, A., Maritan, A.: A variational approach to the localization transition of heteropolymers at interfaces. Europhys. Lett. 46, 301–306 (1999) CrossRefADSGoogle Scholar
  29. 29.
    Whittington, S.G.: Randomly coloured self-avoiding walks: adsorption and localization. Markov Process. Relat. Fields 13, 761–776 (2007) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thierry Bodineau
    • 1
  • Giambattista Giacomin
    • 2
  • Hubert Lacoin
    • 2
  • Fabio Lucio Toninelli
    • 3
  1. 1.Département de Mathématiques et ApplicationsEcole Normale SupérieureParis Cedex 05France
  2. 2.Laboratoire de Probabilités et Modèles Aléatoires (CNRS U.M.R. 7599), U.F.R. MathématiquesUniversité Paris 7—Denis DiderotParis Cedex 05France
  3. 3.Laboratoire de Physique and CNRS, UMR 5672Ecole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations