Journal of Statistical Physics

, Volume 132, Issue 4, pp 627–647

Random Line Tessellations of the Plane: Statistical Properties of Many-Sided Cells

Article

Abstract

We consider a family of random line tessellations of the Euclidean plane introduced in a more formal context by Hug and Schneider (Geom. Funct. Anal. 17:156, 2007) and described by a parameter α≥1. For α=1 the zero-cell (that is, the cell containing the origin) coincides with the Crofton cell of a Poisson line tessellation, and for α=2 it coincides with the typical Poisson-Voronoi cell. Let pn(α) be the probability for the zero-cell to have n sides. We construct the asymptotic expansion of log pn(α) up to terms that vanish as n→∞. Our methods are nonrigorous but of the kind commonly accepted in theoretical physics as leading to exact results. In the large-n limit the cell is shown to become circular. The circle is centered at the origin when α>1, but gets delocalized for the Crofton cell, α=1, which is a singular point of the parameter range. The large-n expansion of log pn(1) is therefore different from that of the general case and we show how to carry it out. As a corollary we obtain the analogous expansion for the typicaln-sided cell of a Poisson line tessellation.

Keywords

Random line tessellations Crofton cell Exact results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000) MATHGoogle Scholar
  2. 2.
    Goudsmit, S.: Rev. Mod. Phys. 17, 321 (1945) MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 901 (1964) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 1157 (1964) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Miles, R.E.: Adv. Math. 10, 256 (1973) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975) MATHGoogle Scholar
  7. 7.
    Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 11, 369 (1998) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 12, 301 (1999) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldman, A.: Ann. Probab. 26, 1727 (1998) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hug, D., Reitzner, M., Schneider, R.: Adv. Appl. Probab. 36, 667 (2004) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Santaló, L.A.: Introduction to Integral Geometry. Hermann, Paris (1953). This formula expresses the length of a planar curve in terms of its number of intersections with the set of straight lines in that plane MATHGoogle Scholar
  12. 12.
    Tanner, J.C.: J. Appl. Probab. 20, 400 (1983) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Crain, I., Miles, R.E.: J. Stat. Comput. Simul. 4, 293 (1976) MATHCrossRefGoogle Scholar
  14. 14.
    George, E.I.: J. Appl. Probab. 24, 557 (1987) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Michel, J., Paroux, K.: Methodol. Comput. Appl. Probab. (2007). Available online Google Scholar
  16. 16.
    Calka, P.: Adv. Appl. Probab. 35, 551 (2003) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hilhorst, H.J.: J. Stat. Mech. Exp. L02003 (2005) Google Scholar
  18. 18.
    Hilhorst, H.J.: J. Stat. Mech. Exp. P09005 (2005) Google Scholar
  19. 19.
    Hilhorst, H.J.: Eur. Phys. J. B (2008). Available online Google Scholar
  20. 20.
    Hilhorst, H.J.: J. Phys. A 40, 2615 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Hilhorst, H.J.: J. Phys. A 39, 7227 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Hug, D., Schneider, R.: Geom. Funct. Anal. 17, 156 (2007) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Møller, J.: Lectures on Random Voronoi Tessellations. Springer, Berlin (1994) Google Scholar
  24. 24.
    Miles, R.E.: Adv. Appl. Probab. 27, 397 (1995) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Calka, P., Schreiber, T.: Ann. Probab. 33, 1625 (2005) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schneider, R.: Convex Bodies—the Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar
  27. 27.
    Miles, R.E., Maillardet, R.J.: J. Appl. Probab. 19 A, 97 (1982) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Calka, P.: Adv. Appl. Probab. 35, 863 (2003) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Brillinger, D.R.: Times Series Data Analysis and Theory. Holt, Rinehard and Winston, New York (1975) Google Scholar
  30. 30.
    Brillinger, D.R., Rosenblatt, M.: Spectral Analysis of Time Series. Wiley, New York (1967), p. 183 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueUniv. Paris-Sud and CNRSOrsay CedexFrance
  2. 2.Laboratoire MAP5Université Paris DescartesParis Cedex 06France

Personalised recommendations