Global Spectral Gap for Dirichlet-Kac Random Motions

  • Gaston Giroux
  • René FerlandEmail author


We prove that the global spectral gap, for any Dirichlet-Kac random motion, is equal to the convergence rate of the limit motion.


Spectral gap Dirichlet distribution Boltzmann-like equations Kac’s model 


  1. 1.
    Barnsley, M., Turchetti, G.: A study of Boltzmann energy equations. Ann. Phys. 159, 1–61 (1985). doi: 10.1016/0003-4916(85)90191-5 zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Carlen, E., Carvalho, M.C., Loss, M.: Determination of the spectral gap in Kac’s master equation and related stochastic evolutions. Acta Math. 191, 1–54 (2003). doi: 10.1007/BF02392695 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlen, E., Geronimo, J., Loss, M.: Determination of the spectral gap in the Kac model for physical momentum and energy conserving collisions. Available at (2007)
  4. 4.
    Ferland, R.: Law of large numbers for pairwise interacting particle systems. Math. Models Methods Appl. Sci. 4, 1–15 (1994). doi: 10.1142/S0218202594000029 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ferland, R., Giroux, G.: Cutoff-type Boltzmann equations: convergence of the solution. Adv. Appl. Math. 8, 98–107 (1987). doi: 10.1016/0196-8858(87)90007-8 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferland, R., Giroux, G.: An exponential rate of convergence for a class of Boltzmann processes. Stoch. Stoch. Rep. 35, 79–91 (1991). doi: 10.1080/17442509108833691 zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hoare, M.H.: Quadratic transport and soluble Boltzmann equation. Adv. Chem. Phys. 56, 1–140 (1984) CrossRefGoogle Scholar
  8. 8.
    Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York (1972) zbMATHGoogle Scholar
  9. 9.
    Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956) Google Scholar
  10. 10.
    Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169 (2002). doi: 10.1086/338446 CrossRefGoogle Scholar
  11. 11.
    Matsui, T., Motoki, M., Kamatani, N.: Polynomial time approximation sampler for discretized Dirichlet distribution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) Algorithms and Computation: 14th International Symposium, ISAAC Proceedings, Kyoto, Japan, December 15–17, 2003, pp. 676–685. Springer, Berlin (2003) Google Scholar
  12. 12.
    Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold Co., London/New York/Toronto (1971) zbMATHGoogle Scholar
  13. 13.
    Tanaka, H.: Propagation of chaos for certain purely discontinuous Markov processes with interaction. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17, 253–272 (1970) Google Scholar
  14. 14.
    Wild, E.: On Boltzmann’s equation in the kinetic theory of gases. Proc. Camb. Phil. Soc. 47, 602–609 (1951) zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.410 VimySherbrookeCanada
  2. 2.Department of MathematicsUniversity of Quebec in MontrealMontrealCanada

Personalised recommendations