Journal of Statistical Physics

, Volume 132, Issue 2, pp 275–290 | Cite as

Airy Kernel with Two Sets of Parameters in Directed Percolation and Random Matrix Theory

Article

Abstract

We introduce a generalization of the extended Airy kernel with two sets of real parameters. We show that this kernel arises in the edge scaling limit of correlation kernels of determinantal processes related to a directed percolation model and to an ensemble of random matrices.

Keywords

Random matrices Directed percolation Determinantal point process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999) CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Baik, J., Ben Arous, G., Peche, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2006) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Borodin, A.: Periodic Schur process and cylindric partitions. Duke Math. J. 140(3), 391–468 (2007). arXiv:math/0601019 CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Borodin, A., Olshanski, G.: Stochastic dynamics related to Plancherel measure on partitions. In: Representation Theory, Dynamical Systems, and Asymptotic Combinatorics. Am. Math. Soc. Transl. Ser. 2, vol. 217, pp. 9–21. Am. Math. Soc., Providence (2006) Google Scholar
  5. 5.
    Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process and their Pfaffian analogs. J. Stat. Phys. 121(3–4), 291–317 (2006) ADSMathSciNetGoogle Scholar
  6. 6.
    Bowick, M., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268(1), 21–28 (1991) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Desrosiers, P., Forrester, P.J.: Asymptotic correlations for Gaussian and Wishart matrices with external source. Int. Math. Res. Not. (2006) Google Scholar
  8. 8.
    Edrei, A.: On the generating function of a doublyinfinite, totally positive sequence. Trans. Am. Math. Soc. 74(3), 367–383 (1953) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain, I: eigenvalue correlations. J. Phys. A: Math. Gen. 31, 4449–4456 (1998) CrossRefADSMathSciNetMATHGoogle Scholar
  10. 10.
    Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402(3), 709–728 (1993) CrossRefADSMathSciNetMATHGoogle Scholar
  11. 11.
    Forrester, P.J., Nagao, T.: Determinantal correlations for classical projection processes. Preprint (2008). arXiv:0801.0100
  12. 12.
    Forrester, P.J., Rains, E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131, 1–61 (2005) CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Glynn, P., Whitt, W.: Departures from many queues in series. Ann. Appl. Probab. 1(4), 546–572 (1991) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Imamura, T., Sasamoto, T.: Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. Preprint (2007). arXiv:math-ph/0702009
  15. 15.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) CrossRefADSMathSciNetMATHGoogle Scholar
  16. 16.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1–2), 277–329 (2003) ADSMathSciNetMATHGoogle Scholar
  17. 17.
    Macêdo, A.M.: Universal parametric correlations at the Soft Edge of the spectrum of random matrix ensembles. Eurohys. Lett. 26(9), 641–646 (1994) CrossRefADSGoogle Scholar
  18. 18.
    Nagao, T., Forrester, P.J.: Multilevel dynamical correlation function for Dyson’s Brownian motion model of random matrices. Phys. Lett. A 247, 42–46 (1998) CrossRefADSGoogle Scholar
  19. 19.
    Okounkov, A.: Infinite wedge and random partitions. Sel. Math. (N.S.) 7(1), 57–81 (2001) CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Okounkov, A., Olshanski, G.: Asymptotics of Jack polynomials as the number of variables goes to infinity. Int. Math. Res. Not. 13, 641–682 (1998) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (2003) CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5–6), 1071–1106 (2002) CrossRefMATHGoogle Scholar
  23. 23.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Phys. Lett. B 305(1–2), 115–118 (1993) ADSMathSciNetGoogle Scholar
  24. 24.
    Tracy, C.A., Widom, H.: Differential equations for Dyson processes. Commun. Math. Phys. 252(1–3), 7–41 (2004) CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mathematics 253-37CaltechPasadenaUSA
  2. 2.Institute for Information Transmission ProblemsMoscowRussia
  3. 3.Institut FourierSaint Martin d’HeresFrance
  4. 4.Department of MathematicsUniversity of California at DavisDavisUSA

Personalised recommendations