Journal of Statistical Physics

, Volume 133, Issue 3, pp 513–533

On the Validations of the Asymptotic Matching Conjectures

  • S. Friedland
  • E. Krop
  • P. H. Lundow
  • K. Markström
Article

DOI: 10.1007/s10955-008-9550-y

Cite this article as:
Friedland, S., Krop, E., Lundow, P.H. et al. J Stat Phys (2008) 133: 513. doi:10.1007/s10955-008-9550-y

Abstract

In this paper we review the asymptotic matching conjectures for r-regular bipartite graphs, and their connections in estimating the monomer-dimer entropies in d-dimensional integer lattice and Bethe lattices. We prove new rigorous upper and lower bounds for the monomer-dimer entropies, which support these conjectures. We describe a general construction of infinite families of r-regular tori graphs and give algorithms for computing the monomer-dimer entropy of density p, for any p∈[0,1], for these graphs. Finally we use tori graphs to test the asymptotic matching conjectures for certain infinite r-regular bipartite graphs.

Keywords

Matching and asymptotic growth of average matchings for r-regular bipartite graphs Monomer-dimer partitions and entropies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Friedland
    • 1
    • 2
  • E. Krop
    • 1
  • P. H. Lundow
    • 3
  • K. Markström
    • 4
  1. 1.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Berlin Mathematical SchoolBerlinGermany
  3. 3.Department of PhysicsAlbaNova University CenterStockholmSweden
  4. 4.Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden

Personalised recommendations