Journal of Statistical Physics

, Volume 131, Issue 6, pp 989–1021

# Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior

Article

## Abstract

This paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results.

## Keywords

Individual based model Fish behavior Persistent Turning Walker model Ornstein-Uhlenbeck process Kinetic Fokker-Planck equation Asymptotic analysis Diffusion approximation

## References

1. 1.
Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112(1/2), 135–153 (2003)
2. 2.
Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982) Google Scholar
3. 3.
Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006)
4. 4.
Aw, A., Klar, A., Rascle, M., Materne, T.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002)
5. 5.
Bass, R.: Diffusions and Elliptic Operators. Springer, New York (1997) Google Scholar
6. 6.
Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984)
7. 7.
Ben Abdallah, N., Degond, P., Mellet, A., Poupaud, F.: Electron transport in semiconductor superlattices. Q. Appl. Math. 61, 161–192 (2003)
8. 8.
Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. J. Publ. RIMS Kyoto Univ. 15, 53–157 (1979)
9. 9.
Brézis, H.: Analyse Fonctionnelle. Dunod, Paris (1983)
10. 10.
Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G., Stewart, B.S.: Employing stochastic differential equations to model wildlife motion. Bull. Braz. Math. Soc. 33, 385–408 (2002)
11. 11.
Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002) Google Scholar
12. 12.
Castella, F., Degond, P., Goudon, T.: Diffusion dynamics of classical systems driven by an oscillatory force. J. Stat. Phys. 124, 913–950 (2006)
13. 13.
Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1991) Google Scholar
14. 14.
Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)
15. 15.
Degond, P.: Global existence of solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. An. Sci. Ec. Norm. Sup. 19, 519–542 (1986)
16. 16.
Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology Series, pp. 3–57. Birkhäuser, Boston (2003) Google Scholar
17. 17.
Degond, P., Mancini, S.: Diffusion driven by collisions with the boundary. Asymptot. Anal. 27, 47–73 (2001)
18. 18.
Degond, P., Mas-Gallic, S.: Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Transp. Theory Stat. Phys. 16, 589–636 (1987)
19. 19.
Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. (M3AS) (to appear) Google Scholar
20. 20.
Degond, P., Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris, Ser. I 345, 555–560 (2007)
21. 21.
Degond, P., Zhang, K.: Diffusion approximation of a scattering matrix model of a semiconductor superlattice. SIAM J. Appl. Math. 63, 279–298 (2002)
22. 22.
Degond, P., Latocha, V., Mancini, S., Mellet, A.: Diffusion dynamics of an electron gas confined between two plates. Methods Appl. Anal. 9, 127–150 (2002)
23. 23.
Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62, 1501–1519 (2002)
24. 24.
Desvillettes, L., Dolbeault, J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun. Partial Differ. Equ. 16, 451–489 (1991)
25. 25.
D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.: Self-propelled particles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett. (2006) Google Scholar
26. 26.
Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation, invited lecture. In: The 2001 International Symposium on Nonlinear Theory and its Applications (NOLTA 2001), Miyagi, Japan (Oct. 28–Nov. 1, 2001) Google Scholar
27. 27.
Friedrich, B.M., Julicher, F.: Chemotaxis of sperm cells. Proc. Natl. Acad. Sci. USA 104, 13256–13261 (2007)
28. 28.
Gautrais, J., Motsch, S., Jost, C., Soria, M., Campo, A., Fournier, R., Bianco, S., Théraulaz, G.: Analyzing fish movement as a persistent turning walker (in preparation) Google Scholar
29. 29.
Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135–160 (1992)
30. 30.
Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 6th edn. Academic, New York (2000) Google Scholar
31. 31.
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)
32. 32.
Gross, L.: Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups. Lectures Notes in Mathematics, vol. 1563. Springer, Berlin (1992), pp. 54–88 Google Scholar
33. 33.
Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)
34. 34.
Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J.L., Fourcassié, V., Theraulaz, G.: A model of animal movements in a bounded space. J. Theor. Biol. 225, 443–451 (2003)
35. 35.
Jost, C., et al.: From individual to collective ant displacements in heterogenous environments. J. Theor. Biol. 250, 424–434 (2008)
36. 36.
Kulinskii, V.L., Ratushnaya, V.I., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints. Europhys. Lett. 71, 207–213 (2005)
37. 37.
Lions, J.L.: Equations différentielles opérationnelles et problèmes aux limites. Springer, New York (1961)
38. 38.
Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)
39. 39.
Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)
40. 40.
Oksendal, B.: Stochastic Differential Equations. Springer, New York (1992) Google Scholar
41. 41.
Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)
42. 42.
Parrish, J.K., Viscido, S.V.: Traffic rules of fish schools: a review of agent-based approaches. In: Hemelrijk, C.K. (ed.) Self-Organization and Complexity. Cambridge University Press, Cambridge (2003) Google Scholar
43. 43.
Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305 (2002)
44. 44.
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
45. 45.
Poupaud, F.: Diffusion approximation of the linear semiconductor equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991)
46. 46.
Ratushnaya, V.I., Bedeaux, D., Kulinskii, V.L., Zvelindovsky, A.V.: Collective behaviour of self propelling particles with kinematic constraints; the relations between the discrete and the continuous description. Physica A 381, 39–46 (2007)
47. 47.
Ratushnaya, V.I., Kulinskii, V.L., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions. Physica A 366, 107–114 (2006)
48. 48.
Theraulaz, G., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99, 9645–9649 (2002)
49. 49.
Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)
50. 50.
Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)
51. 51.
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)