Journal of Statistical Physics

, Volume 131, Issue 6, pp 989–1021 | Cite as

Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior

  • Pierre Degond
  • Sébastien MotschEmail author


This paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results.


Individual based model Fish behavior Persistent Turning Walker model Ornstein-Uhlenbeck process Kinetic Fokker-Planck equation Asymptotic analysis Diffusion approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112(1/2), 135–153 (2003) CrossRefzbMATHGoogle Scholar
  2. 2.
    Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982) Google Scholar
  3. 3.
    Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006) CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Aw, A., Klar, A., Rascle, M., Materne, T.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bass, R.: Diffusions and Elliptic Operators. Springer, New York (1997) Google Scholar
  6. 6.
    Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984) CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Ben Abdallah, N., Degond, P., Mellet, A., Poupaud, F.: Electron transport in semiconductor superlattices. Q. Appl. Math. 61, 161–192 (2003) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. J. Publ. RIMS Kyoto Univ. 15, 53–157 (1979) MathSciNetGoogle Scholar
  9. 9.
    Brézis, H.: Analyse Fonctionnelle. Dunod, Paris (1983) zbMATHGoogle Scholar
  10. 10.
    Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G., Stewart, B.S.: Employing stochastic differential equations to model wildlife motion. Bull. Braz. Math. Soc. 33, 385–408 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002) Google Scholar
  12. 12.
    Castella, F., Degond, P., Goudon, T.: Diffusion dynamics of classical systems driven by an oscillatory force. J. Stat. Phys. 124, 913–950 (2006) CrossRefMathSciNetzbMATHADSGoogle Scholar
  13. 13.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1991) Google Scholar
  14. 14.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Degond, P.: Global existence of solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. An. Sci. Ec. Norm. Sup. 19, 519–542 (1986) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology Series, pp. 3–57. Birkhäuser, Boston (2003) Google Scholar
  17. 17.
    Degond, P., Mancini, S.: Diffusion driven by collisions with the boundary. Asymptot. Anal. 27, 47–73 (2001) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Degond, P., Mas-Gallic, S.: Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Transp. Theory Stat. Phys. 16, 589–636 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. (M3AS) (to appear) Google Scholar
  20. 20.
    Degond, P., Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris, Ser. I 345, 555–560 (2007) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Degond, P., Zhang, K.: Diffusion approximation of a scattering matrix model of a semiconductor superlattice. SIAM J. Appl. Math. 63, 279–298 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Degond, P., Latocha, V., Mancini, S., Mellet, A.: Diffusion dynamics of an electron gas confined between two plates. Methods Appl. Anal. 9, 127–150 (2002) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62, 1501–1519 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Desvillettes, L., Dolbeault, J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun. Partial Differ. Equ. 16, 451–489 (1991) CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.: Self-propelled particles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett. (2006) Google Scholar
  26. 26.
    Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation, invited lecture. In: The 2001 International Symposium on Nonlinear Theory and its Applications (NOLTA 2001), Miyagi, Japan (Oct. 28–Nov. 1, 2001) Google Scholar
  27. 27.
    Friedrich, B.M., Julicher, F.: Chemotaxis of sperm cells. Proc. Natl. Acad. Sci. USA 104, 13256–13261 (2007) CrossRefADSGoogle Scholar
  28. 28.
    Gautrais, J., Motsch, S., Jost, C., Soria, M., Campo, A., Fournier, R., Bianco, S., Théraulaz, G.: Analyzing fish movement as a persistent turning walker (in preparation) Google Scholar
  29. 29.
    Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135–160 (1992) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 6th edn. Academic, New York (2000) Google Scholar
  31. 31.
    Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004) CrossRefADSGoogle Scholar
  32. 32.
    Gross, L.: Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups. Lectures Notes in Mathematics, vol. 1563. Springer, Berlin (1992), pp. 54–88 Google Scholar
  33. 33.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001) CrossRefADSGoogle Scholar
  34. 34.
    Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J.L., Fourcassié, V., Theraulaz, G.: A model of animal movements in a bounded space. J. Theor. Biol. 225, 443–451 (2003) CrossRefGoogle Scholar
  35. 35.
    Jost, C., et al.: From individual to collective ant displacements in heterogenous environments. J. Theor. Biol. 250, 424–434 (2008) CrossRefGoogle Scholar
  36. 36.
    Kulinskii, V.L., Ratushnaya, V.I., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints. Europhys. Lett. 71, 207–213 (2005) CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Lions, J.L.: Equations différentielles opérationnelles et problèmes aux limites. Springer, New York (1961) zbMATHGoogle Scholar
  38. 38.
    Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Oksendal, B.: Stochastic Differential Equations. Springer, New York (1992) Google Scholar
  41. 41.
    Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Parrish, J.K., Viscido, S.V.: Traffic rules of fish schools: a review of agent-based approaches. In: Hemelrijk, C.K. (ed.) Self-Organization and Complexity. Cambridge University Press, Cambridge (2003) Google Scholar
  43. 43.
    Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305 (2002) CrossRefGoogle Scholar
  44. 44.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983) zbMATHGoogle Scholar
  45. 45.
    Poupaud, F.: Diffusion approximation of the linear semiconductor equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991) MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ratushnaya, V.I., Bedeaux, D., Kulinskii, V.L., Zvelindovsky, A.V.: Collective behaviour of self propelling particles with kinematic constraints; the relations between the discrete and the continuous description. Physica A 381, 39–46 (2007) CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Ratushnaya, V.I., Kulinskii, V.L., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions. Physica A 366, 107–114 (2006) CrossRefADSGoogle Scholar
  48. 48.
    Theraulaz, G., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99, 9645–9649 (2002) CrossRefADSzbMATHGoogle Scholar
  49. 49.
    Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006) CrossRefMathSciNetGoogle Scholar
  51. 51.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Mathematics of Toulouse UMR 5219 (CNRS-UPS-INSA-UT1-UT2)Université Paul SabatierToulouse cedexFrance

Personalised recommendations