Advertisement

Journal of Statistical Physics

, Volume 131, Issue 5, pp 941–967 | Cite as

The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

  • Laurent Desvillettes
  • François Golse
  • Valeria Ricci
Article

Abstract

We propose a mathematical derivation of Brinkman’s force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Ω⊂ℝ3 for the velocity field u of an incompressible fluid with kinematic viscosity ν and density 1. Brinkman’s force consists of a source term 6π ν j where j is the current density of the particles, and of a friction term 6π ν ρ u where ρ is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Ω minus the disjoint union of N balls of radius ε=1/N in the large N limit with no-slip boundary condition. The number density ρ and current density j are obtained from the limiting phase space empirical measure \(\frac{1}{N}\sum_{1\le k\le N}\delta_{x_{k},v_{k}}\) , where x k is the center of the k-th ball and v k its instantaneous velocity. This can be seen as a generalization of Allaire’s result in [Arch. Ration. Mech. Anal. 113:209–259, [1991]] who considered the case of periodically distributed x k s with v k =0, and our proof is based on slightly simpler though similar homogenization arguments. Similar equations are used for describing the fluid phase in various models for sprays.

Keywords

Stokes equations Navier-Stokes equations Homogenization Suspension flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amsden, A.A., O’Rourke, P.J., Butler, T.D.: A computer program for chemically reactive flows with sprays. Report # LA-11560-MS, Los Alamos National Laboratory (1989) Google Scholar
  3. 3.
    Batchelor, G.K.: Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52, 245–268 (1972) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Baranger, C., Desvillettes, L.: Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Equ. 3, 1–26 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caflisch, R.E., Luke, J.H.C.: Variance in the sedimentation speed of a suspension. Phys. Fluids 28, 759–760 (1985) zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Caflisch, R.E., Rubinstein, J.: Lectures on the Mathematical Theory of Multi-phase Flows. Courant Institute Lecture Notes, New York (1984) Google Scholar
  7. 7.
    Cioranescu, D., Murat, F.: Une terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2. Research Notes in Mathematics, vol. 60, pp. 98–138 (1982) Google Scholar
  8. 8.
    Feuillebois, F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139, 145–171 (1984) zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Jabin, P.-E.: Various levels of models for aerosols. Math. Models Methods Appl. Sci. 12, 903–919 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jabin, P.-E., Otto, F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250, 415–432 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Mathematics and its Applications, vol. 2. Gordon and Breach/Science Publishers, New York (1969) zbMATHGoogle Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon Press, Oxford (1987) zbMATHGoogle Scholar
  13. 13.
    L’vov, V.A., Khruslov, E.Ya.: Perturbation of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra 267, 173–177 (1978) (in Russian) MathSciNetGoogle Scholar
  14. 14.
    O’Rourke, P.J.: Collective drop effects on vaporizing liquid sprays. PhD thesis, Los Alamos National Laboratory (1981) Google Scholar
  15. 15.
    Rubinstein, J.: On the macroscopic description of slow viscous flow past a random array of spheres. J. Stat. Phys. 44, 849–863 (1986) zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Rubinstein, J., Keller, J.: Particle distribution functions in suspensions. Phys. Fluids A 1, 1632–1641 (1989) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laurent Desvillettes
    • 1
  • François Golse
    • 2
    • 3
  • Valeria Ricci
    • 4
  1. 1.ENS Cachan, CMLA, IUF & CNRSPRES UniverSudCachan CedexFrance
  2. 2.Laboratoire J.-L. LionsUniversité Pierre-et-Marie CurieParis Cedex 05France
  3. 3.Centre de Mathématiques Laurent SchwartzEcole PolytechniquePalaiseau CedexFrance
  4. 4.Dipartimento di Metodi e Modelli MatematiciUniversità di PalermoPalermoItaly

Personalised recommendations