Journal of Statistical Physics

, Volume 131, Issue 5, pp 941–967

# The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

• Laurent Desvillettes
• François Golse
• Valeria Ricci
Article

## Abstract

We propose a mathematical derivation of Brinkman’s force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Ω⊂ℝ3 for the velocity field u of an incompressible fluid with kinematic viscosity ν and density 1. Brinkman’s force consists of a source term 6π ν j where j is the current density of the particles, and of a friction term 6π ν ρ u where ρ is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Ω minus the disjoint union of N balls of radius ε=1/N in the large N limit with no-slip boundary condition. The number density ρ and current density j are obtained from the limiting phase space empirical measure $$\frac{1}{N}\sum_{1\le k\le N}\delta_{x_{k},v_{k}}$$ , where x k is the center of the k-th ball and v k its instantaneous velocity. This can be seen as a generalization of Allaire’s result in [Arch. Ration. Mech. Anal. 113:209–259, [1991]] who considered the case of periodically distributed x k s with v k =0, and our proof is based on slightly simpler though similar homogenization arguments. Similar equations are used for describing the fluid phase in various models for sprays.

## Keywords

Stokes equations Navier-Stokes equations Homogenization Suspension flows

## References

1. 1.
Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)
2. 2.
Amsden, A.A., O’Rourke, P.J., Butler, T.D.: A computer program for chemically reactive flows with sprays. Report # LA-11560-MS, Los Alamos National Laboratory (1989) Google Scholar
3. 3.
Batchelor, G.K.: Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52, 245–268 (1972)
4. 4.
Baranger, C., Desvillettes, L.: Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Equ. 3, 1–26 (2006)
5. 5.
Caflisch, R.E., Luke, J.H.C.: Variance in the sedimentation speed of a suspension. Phys. Fluids 28, 759–760 (1985)
6. 6.
Caflisch, R.E., Rubinstein, J.: Lectures on the Mathematical Theory of Multi-phase Flows. Courant Institute Lecture Notes, New York (1984) Google Scholar
7. 7.
Cioranescu, D., Murat, F.: Une terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2. Research Notes in Mathematics, vol. 60, pp. 98–138 (1982) Google Scholar
8. 8.
Feuillebois, F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139, 145–171 (1984)
9. 9.
Jabin, P.-E.: Various levels of models for aerosols. Math. Models Methods Appl. Sci. 12, 903–919 (2002)
10. 10.
Jabin, P.-E., Otto, F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250, 415–432 (2004)
11. 11.
Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Mathematics and its Applications, vol. 2. Gordon and Breach/Science Publishers, New York (1969)
12. 12.
Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon Press, Oxford (1987)
13. 13.
L’vov, V.A., Khruslov, E.Ya.: Perturbation of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra 267, 173–177 (1978) (in Russian)
14. 14.
O’Rourke, P.J.: Collective drop effects on vaporizing liquid sprays. PhD thesis, Los Alamos National Laboratory (1981) Google Scholar
15. 15.
Rubinstein, J.: On the macroscopic description of slow viscous flow past a random array of spheres. J. Stat. Phys. 44, 849–863 (1986)
16. 16.
Rubinstein, J., Keller, J.: Particle distribution functions in suspensions. Phys. Fluids A 1, 1632–1641 (1989)

## Authors and Affiliations

• Laurent Desvillettes
• 1
• François Golse
• 2
• 3
• Valeria Ricci
• 4
1. 1.ENS Cachan, CMLA, IUF & CNRSPRES UniverSudCachan CedexFrance
2. 2.Laboratoire J.-L. LionsUniversité Pierre-et-Marie CurieParis Cedex 05France
3. 3.Centre de Mathématiques Laurent SchwartzEcole PolytechniquePalaiseau CedexFrance
4. 4.Dipartimento di Metodi e Modelli MatematiciUniversità di PalermoPalermoItaly