Journal of Statistical Physics

, Volume 131, Issue 4, pp 749–781 | Cite as

On the Uniqueness for the Spatially Homogeneous Boltzmann Equation with a Strong Angular Singularity

  • Nicolas Fournier
  • Hélène GuérinEmail author


We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules.

Our proof relies on the ideas of Tanaka (Z. Wahrscheinlichkeitstheor. Verwandte. Geb. 46(1):67–105, [1978]) we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other.


Boltzmann equation without cutoff Long-range interaction Uniqueness Wasserstein distance Quadratic cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bhatt, A., Karandikar, R.: Invariant measures and evolution equations for Markov processes characterized via martingale problems. Ann. Probab. 21(4), 2246–2268 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cercignani, C.: The Boltzmann Equation and its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988) zbMATHGoogle Scholar
  4. 4.
    Desvillettes, L.: Boltzmann’s Kernel and the Spatially Homogeneous Boltzmann Equation. Riv. Mat. dell’Univ. Parma 6(4), 1–22 (2001) (special issue) Google Scholar
  5. 5.
    Desvillettes, L., Graham, C., Méléard, S.: Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stoch. Process. Appl. 84(1), 115–135 (1999) zbMATHCrossRefGoogle Scholar
  6. 6.
    Desvillettes, L., Mouhot, C.: Regularity, stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. arXiv eprint math.AP/0606307 (2006) Google Scholar
  7. 7.
    Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986) zbMATHGoogle Scholar
  8. 8.
    Fontbona, J., Guérin, H., Méléard, S.: Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Preprint (2007) Google Scholar
  9. 9.
    Fournier, N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125(4), 927–946 (2006) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Fournier, N., Méléard, S.: A stochastic particle numerical method for 3D Boltzmann equations without cutoff. Math. Comput. 71(238), 583–604 (2002) zbMATHADSGoogle Scholar
  11. 11.
    Fournier, N., Méléard, S.: A weak criterion of absolute continuity for jump processes: application to the Boltzmann equation. Bernoulli 8(4), 537–558 (2002) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Preprint (2007) Google Scholar
  13. 13.
    Horowitz, J., Karandikar, R.L.: Martingale problems associated with the Boltzmann equation. In: Seminar on Stochastic Processes, San Diego, CA, 1989. Progr. Probab., vol. 18, pp. 75–122. Birkhäuser, Boston (1990) Google Scholar
  14. 14.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1981) zbMATHGoogle Scholar
  15. 15.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (1987) zbMATHGoogle Scholar
  16. 16.
    Lu, X., Mouhot, C.: About measures solutions of the spatially homogeneous Boltzmann equation. Work in progress Google Scholar
  17. 17.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheor. Verwandte. Geb. 46(1), 67–105 (1978) zbMATHCrossRefGoogle Scholar
  19. 19.
    Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In: Proceedings of the International Symposium on Stochastic Differential Equations. Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, pp. 409–425. Wiley, New York (1978) Google Scholar
  20. 20.
    Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002) CrossRefGoogle Scholar
  23. 23.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.LAMA, Université Paris Est, Faculté de Sciences et TechnologieUniversité Paris XIICréteil CedexFrance
  2. 2.IRMARUniv. Rennes 1Rennes CedexFrance

Personalised recommendations