Journal of Statistical Physics

, Volume 131, Issue 1, pp 175–202 | Cite as

From Ballistic to Diffusive Behavior in Periodic Potentials

Article

Abstract

The long-time/large-scale, small-friction asymptotic for the one dimensional Langevin equation with a periodic potential is studied in this paper. It is shown that the Freidlin-Wentzell and central limit theorem (homogenization) limits commute. We prove that, in the combined small friction, long-time/large-scale limit the particle position converges weakly to a Brownian motion with a singular diffusion coefficient which we compute explicitly. We show that the same result is valid for a whole one parameter family of space/time rescalings. The proofs of our main results are based on some novel estimates on the resolvent of a hypoelliptic operator.

Keywords

Homogenization Hypoelliptic diffusion Hypocoercivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benabou, G.: Homogenization of Ornstein-Uhlenbeck process in random environment. Commun. Math. Phys. 266(3), 699–714 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Eckmann, J.-P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ethier, S., Kurtz, T.: Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1986) MATHGoogle Scholar
  4. 4.
    Eckmann, J.-P., Pillet, C.-A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Fannjiang, A.: Time scales in homogenization of periodic flows with vanishing molecular diffusion. J. Differ. Equ. 179(2), 433–455 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freidlin, M.: Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. 117(3–4), 617–634 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, vol. 260. Springer, New York (1984) Google Scholar
  8. 8.
    Freidlin, M.I., Wentzell, A.D.: Random perturbations of Hamiltonian systems. Mem. Am. Math. Soc. 109(523), 82 (1994) MathSciNetGoogle Scholar
  9. 9.
    Freidlin, M., Weber, M.: Random perturbations of nonlinear oscillators. Ann. Probab. 26(3), 925–967 (1998) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Freidlin, M., Weber, M.: A remark on random perturbations of the nonlinear pendulum. Ann. Appl. Probab. 9(3), 611–628 (1999) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hérau, F.: Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244(1), 95–118 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Horsthemke, W., Lefever, R.: Noise-induced transitions. In: Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics, vol. 15. Springer, Berlin (1984) Google Scholar
  13. 13.
    Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, Berlin (2005) MATHGoogle Scholar
  15. 15.
    Hairer, M., Pavliotis, G.: Periodic homogenization for hypoelliptic diffusions. J. Stat. Phys. 117(1–2), 261–279 (2004) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62(2), 251–341 (1990) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Kohn, J.J.: Pseudo-differential operators and non-elliptic problems. In: Pseudo-Differential Operators, C.I.M.E., Stresa, 1968, pp. 157–165. Edizioni Cremonese, Rome (1969) Google Scholar
  18. 18.
    Kohn, J.J.: Lectures on degenerate elliptic problems. In: Pseudodifferential Operator with Applications, Bressanone, 1977, pp. 89–151. Liguori, Naples (1978) Google Scholar
  19. 19.
    Kozlov, S.: Geometric aspects of averaging. Usp. Mat. Nauk 44(2), 79–120 (1989) Google Scholar
  20. 20.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol. 23. Springer, Berlin (1992) MATHGoogle Scholar
  21. 21.
    Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Lacasta, A., Sancho, J., Romero, A., Sokolov, I., Lindenberg, K.: From subdiffusion to superdiffusion of particles on solid surfaces. Phys. Rev. E 70, 051104 (2004) CrossRefADSGoogle Scholar
  23. 23.
    Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967) MATHGoogle Scholar
  24. 24.
    Olla, S.: Homogenization of Diffusion Processes in Random Fields. Lecture Notes (1994) Google Scholar
  25. 25.
    Pavliotis, G.A., Stuart, A.M.: Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul. 4(1), 1–35 (2005) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pavliotis, G., Stuart, A.: Multiscale Methods: Homogenization and Averaging. Lecture Notes (2007) Google Scholar
  27. 27.
    Papanicolaou, G., Varadhan, S.R.S.: Ornstein-Uhlenbeck process in a random potential. Commun. Pure Appl. Math. 38(6), 819–834 (1985) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Risken, H.: The Fokker-Planck Equation. Springer Series in Synergetics, vol. 18. Springer, Berlin (1989) MATHGoogle Scholar
  30. 30.
    Rodenhausen, H.: Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Stat. Phys. 55(5–6), 1065–1088 (1989) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Cerrai, S.S., Freidlin, M.: On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom. Probab. Theory Relat. Fields 135(3), 363–394 (2006) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sancho, J., Lacasta, A., Lindenberg, K., Sokolov, I., Romero, A.: Diffusion on a solid surface: anomalous is normal. Phys. Rev. Lett. 92(25), 250601 (2004) CrossRefADSGoogle Scholar
  33. 33.
    Sowers, R.B.: Stochastic averaging near homoclinic orbits via singular perturbations. In: IUTAM Symposium on Nonlinear Stochastic Dynamics. Solid Mech. Appl., vol. 110, pp. 83–94. Kluwer Academic, Dordrecht (2003) Google Scholar
  34. 34.
    Sowers, R.: A boundary layer theory for diffusively perturbed transport around a heteroclinic cycle. Commun. Pure Appl. Math. 58(1), 30–84 (2005) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Villani, C.: Hypocoercivity. Unpublished preprint (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mathematics InstituteThe University of WarwickCoventryUK
  2. 2.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations