Journal of Statistical Physics

, Volume 130, Issue 5, pp 957–981 | Cite as

Random Walk Analysis of the Commensurate-Incommensurate Transition in the Isotropic Spin-1 Chain

  • D. A. Yarotsky


It has been observed that in the isotropic spin-1 chain a transition in the asymptotic properties of the correlation function (commensurate-incommensurate transition) occurs at the AKLT point. We propose a simple random-walk-type argument, explaining this transition. Also, we consider a modification of the AKLT model, for which this argument can be turned into a rigorous proof.


Commensurate-incommensurate transition Isotropic spin-1 chain AKLT model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1987) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Fáth, G., Sütő, A.: Commensurate and incommensurate correlations in Haldane-gap antiferromagnets. Phys. Rev. B 62, 3778–3785 (2000) CrossRefADSGoogle Scholar
  3. 3.
    Haldane, F.D.M.: Continuum dynamics of the 1-d Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A 93, 464–468 (1983) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Haldane, F.D.M.: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solutions of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Kennedy, T.: Ornstein–Zernike decay in the ground state of the quantum Ising model in a transverse magnetic field. Commun. Math. Phys. 137, 599–615 (1991) zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in S=1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Murashima, T., Nomura, K.: Incommensurability and edge states in the one-dimensional S=1 bilinear-biquadratic model. Phys. Rev. B 73, 214431 (2006) CrossRefADSGoogle Scholar
  8. 8.
    Nomura, K.: Onset of incommensurability in quantum spin chain. J. Phys. Soc. Jpn. 72, 476–478 (2003) CrossRefADSGoogle Scholar
  9. 9.
    Schollwöck, U., Jolicoeur, Th., Garel, Th.: On the onset of incommensurability at the VBS point in the S=1 bilinear-biquadratic quantum spin chain. Phys. Rev. B 53, 3304 (1996) CrossRefADSGoogle Scholar
  10. 10.
    Yarotsky, D.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematics InstituteLudwig-Maximilian UniversityMunichGermany

Personalised recommendations