Journal of Statistical Physics

, Volume 130, Issue 1, pp 169–193 | Cite as

On the Energy Growth of Some Periodically Driven Quantum Systems with Shrinking Gaps in the Spectrum

Article

Abstract

We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E n n α , with 0<α<1. In particular, the gaps between successive eigenvalues decay as n α−1. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate ‖V(t) m,n ‖≤ε|mn|p max {m,n}−2γ for mn, where ε>0, p≥1 and γ=(1−α)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and ε is small enough. More precisely, for any initial condition Ψ∈Dom(H 1/2), the diffusion of energy is bounded from above as 〈H Ψ (t)=O(t σ ), where \(\sigma=\alpha/(2\lceil p-1\rceil \gamma-\frac{1}{2})\) . As an application we consider the Hamiltonian H(t)=|p| α +ε v(θ,t) on L 2(S 1,dθ) which was discussed earlier in the literature by Howland.

Keywords

Energy growth Periodically driven quantum system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053–1070 (1998) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Astaburuaga, M.A., Bourget, O., Cortés, V.H., Fernández, C.: Floquet operators without singular continuous spectrum. J. Funct. Anal. 238, 489–517 (2006) MATHMathSciNetGoogle Scholar
  3. 3.
    Barbaroux, J.M., Joye, A.: Expectation values of observables in time-dependent quantum mechanics. J. Stat. Phys. 90, 1225–1249 (1998) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bunimovich, L., Jauslin, H.R., Lebowitz, J.L., Pellegrinotti, A., Nielaba, P.: Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62, 793–817 (1991) CrossRefMathSciNetGoogle Scholar
  5. 5.
    De Bièvre, S., Forni, G.: Transport properties of kicked and quasiperiodic Hamiltonians. J. Stat. Phys. 90, 1201–1223 (1998) MATHCrossRefGoogle Scholar
  6. 6.
    Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AXXB=Y. Bull. Lond. Math. Soc. 29, 1–21 (1997) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bourget, O.: Singular continuous Floquet operators for systems with increasing gaps. J. Math. Anal. Appl. 276, 28–39 (2002) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bourget, O.: Singular continuous Floquet operator for periodic quantum systems. J. Math. Anal. Appl. 301, 65–83 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Combes, J.-M.: Connection between quantum dynamics and spectral properties of time-evolution operators. In: Ames, W.F., Harrell, E.M., Herod, J.V. (eds.) Differential Equations and Applications to Mathematical Physics, pp. 59–68. Academic Press, Boston (1993) Google Scholar
  10. 10.
    Combescure, M.: The quantum stability problem for time-periodic perturbations of the harmonic oscillator. Ann. Inst. Henri Poincaré 47, 62–82 (1987). Erratum: Ann. Inst. Henri Poincaré 47, 451–454 (1987) Google Scholar
  11. 11.
    Combescure, M.: Spectral properties of a periodically kicked quantum Hamiltonian. J. Stat. Phys. 59, 679–690 (1990) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Combescure, M.: Recurrent versus diffusive dynamics for a kicked quantum oscillator. Ann. Inst. Henri Poincaré 57, 67–87 (1992) MATHMathSciNetGoogle Scholar
  13. 13.
    Duclos, P., Lev, O., Šťovíček, P., Vittot, M.: Progressive diagonalization and applications. In: Combes, J.-M., et al. (eds.) Operator Algebras and Mathematical Physics, pp. 75–88. The Theta Foundation, Bucharest (2003) Google Scholar
  14. 14.
    Duclos, P., Soccorsi, E., Šťovíček, P., Vittot, M.: Dynamical localization in periodically driven quantum systems. In: Boca, F.-P., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics, pp. 57–66. The Theta Foundation, Bucharest (2005) Google Scholar
  15. 15.
    Enss, V., Veselić, K.: Bound states and propagating states for time-dependent Hamiltonians. Ann. Inst. Henri Poincaré 39, 159–191 (1983) MATHGoogle Scholar
  16. 16.
    Guarneri, I., Mantica, G.: On the asymptotic properties of quantum dynamics in the presence of a fractal spectrum. Ann. Inst. Henri Poincaré A 61, 369–379 (1994) MATHMathSciNetGoogle Scholar
  17. 17.
    Hagedorn, G.A., Loss, M., Slawny, J.: Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations. J. Phys. A: Math. Gen. 19, 521–531 (1986) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Howland, J.S.: Floquet operators with singular spectrum, I. Ann. Inst. Henri Poincaré 50, 309–323 (1989) MATHMathSciNetGoogle Scholar
  19. 19.
    Howland, J.S.: Floquet operators with singular spectrum, II. Ann. Inst. Henri Poincaré 50, 325–334 (1989) MATHMathSciNetGoogle Scholar
  20. 20.
    Howland, J.S.: Floquet operators with singular spectrum, III. Ann. Inst. Henri Poincaré 69, 265–273 (1998) MATHMathSciNetGoogle Scholar
  21. 21.
    Jauslin, H., Lebowitz, J.L.: Spectral and stability aspects of quantum chaos. Chaos 1, 114–121 (1991) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Joye, A.: Absence of absolutely continuous spectrum of Floquet operators. J. Stat. Phys. 75, 929–952 (1994) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Joye, A.: Upper bounds for the energy expectation in the time-dependent quantum mechanics. J. Stat. Phys. 85, 575–606 (1996) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Krein, S.G.: Linear Differential Equations in Banach Spaces. American Mathematical Society, Providence (1971) Google Scholar
  25. 25.
    McCaw, J., McKellar, B.: On the continuous spectral component of the Floquet operator for a periodically kicked quantum system. J. Math. Phys. 46, 103503 (2005) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Nenciu, G.: Floquet operators without absolutely continuous spectrum. Ann. Inst. Henri Poincaré A 59, 91–97 (1993) MATHMathSciNetGoogle Scholar
  27. 27.
    Nenciu, G.: Adiabatic theory: stability of systems with increasing gaps. Ann. Inst. Henri Poincaré A 67, 411–424 (1997) MATHMathSciNetGoogle Scholar
  28. 28.
    de Oliveira, C.R.: Some remarks concerning stability for nonstationary quantum systems. J. Stat. Phys. 78, 1055–1065 (1995) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    de Oliveira, C.R., Simsen, M.S.: A Floquet operator with pure point spectrum and energy instability. Ann. Inst. Henri Poincaré (2007, to appear) Google Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Academic Press, San Diego (1979) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centre de Physique Théorique de Marseille UMR 6207—Unité Mixte de Recherche du CNRS et des Universités Aix-Marseille I, Aix-Marseille II et de l’ Université du Sud Toulon-Var—Laboratoire affilié à la FRUMAMMarseille Cedex 9France
  2. 2.Department of Mathematics, Faculty of Nuclear ScienceCzech Technical UniversityPragueCzech Republic

Personalised recommendations