Advertisement

Journal of Statistical Physics

, Volume 129, Issue 4, pp 663–676 | Cite as

On a Model of Random Cycles

  • Daniel Gandolfo
  • Jean Ruiz
  • Daniel Ueltschi
Article

Abstract

We consider a model of random permutations of the sites of the cubic lattice. Permutations are weighted so that sites are preferably sent onto neighbors. We present numerical evidence for the occurrence of a transition to a phase with infinite, macroscopic cycles.

Keywords

Random permutations Random cycles Bose-Einstein condensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164, 17–63 (1994) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bricmont, J., Fröhlich, J.: Statistical mechanical methods in particle structure analysis of lattice fields theories (I). General theory. Nucl. Phys. B 251, 517–522 (1985) CrossRefADSGoogle Scholar
  3. 3.
    Chayes, L., Pryadko, L.P., Shtengel, K.: Intersecting loop models on Z d: rigorous results. Nucl. Phys. B 570, 590–614 (2000) zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Feynman, R.P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 1291–1301 (1953) zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Fichtner, K.-H.: Random permutations of countable sets. Probab. Theory Relat. Fields 89, 35–60 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kikuchi, R.: λ transition of liquid Helium. Phys. Rev. 96, 563–568 (1954) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Kikuchi, R., Denman, H.H., Schreiber, C.L.: Statistical mechanics of liquid He. Phys. Rev. 119, 1823–1831 (1960) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Peierls, R.: On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477 (1936) zbMATHCrossRefGoogle Scholar
  9. 9.
    Shepp, L.A., Lloyd, S.L.: Ordered cycle lengths in a random permutation. Trans. Am. Math. Soc. 121, 340–357 (1966) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sütő, A.: Percolation transition in the Bose gas. J. Phys. A 26, 4689–4710 (1993) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Sütő, A.: Percolation transition in the Bose gas II. J. Phys. A 35, 6995–7002 (2002) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Tóth, B.: Improved lower bound on the thermodynamics pressure of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 28, 75–84 (1993) zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Ueltschi, D.: Relation between Feynman cycles and off-diagonal long-range order. Phys. Rev. Lett. 97, 170601 (2006) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centre de Physique Théorique, CNRSUniversités Aix-Marseille 1 et 2 et Sud Toulon-VarMarseilleFrance
  2. 2.Department of MathematicsUniversity of WarwickCoventryEngland

Personalised recommendations