Advertisement

Journal of Statistical Physics

, Volume 129, Issue 3, pp 417–439 | Cite as

Realizability of Point Processes

  • T. Kuna
  • J. L. Lebowitz
  • E. R. Speer
Article

Abstract

There are various situations in which it is natural to ask whether a given collection of k functions, ρ j (r 1,…,r j ), j=1,…,k, defined on a set X, are the first k correlation functions of a point process on X. Here we describe some necessary and sufficient conditions on the ρ j ’s for this to be true. Our primary examples are X=ℝ d , X=ℤ d , and X an arbitrary finite set. In particular, we extend a result by Ambartzumian and Sukiasian showing realizability at sufficiently small densities ρ 1(r). Typically if any realizing process exists there will be many (even an uncountable number); in this case we prove, when X is a finite set, the existence of a realizing Gibbs measure with k body potentials which maximizes the entropy among all realizing measures. We also investigate in detail a simple example in which a uniform density ρ and translation invariant ρ 2 are specified on ℤ; there is a gap between our best upper bound on possible values of ρ and the largest ρ for which realizability can be established.

Keywords

Correlation Function Point Process Stat Phys Pair Distribution Function Cluster Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jarvis, M.R., Mitra, P.P.: Sampling properties of the spectrum and coherency of sequences of action potentials. Neural. Comput. 13, 717–749 (2004) CrossRefGoogle Scholar
  2. 2.
    Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–471 (2004) CrossRefGoogle Scholar
  3. 3.
    Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003) MATHGoogle Scholar
  4. 4.
    Gabrielli, A., Sylos Labini, F., Joyce, M., Pietronero, L.: Statistical Physics for Cosmic Structures. Springer, New York (2004) Google Scholar
  5. 5.
    Kre uın, M.G., Nudel’man, A.A.: The Markov moment problem and extremal problems. Translations of Mathematical Monographs, vol. 50. American Mathematical Society, Providence (1977) Google Scholar
  6. 6.
    Lenard, A.: States of classical statistical mechanical systems of infinitely many particles: I, II. Arch. Ration. Mech. Anal. 59, 219–239, 241–256 (1975) MathSciNetGoogle Scholar
  7. 7.
    Percus, J.K.: The pair distribution function in classical statistical mechanics. In: Frisch, H.L., Lebowitz, J.L. (eds.) The Equilibrium Theory of Classical Fluids. Benjamin, New York (1964) Google Scholar
  8. 8.
    Garrod, C., Percus, J.K.: Reduction of the N-particle variational problem. J. Math. Phys. 5, 1756–1776 (1964) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Percus, J.K.: Kinematic restrictions on the pair density-prototype. Unpublished Lecture Notes, Courant Institute of Mathematical Sciences Google Scholar
  10. 10.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 2nd edn. Academic Press, New York (1987) Google Scholar
  11. 11.
    Kummer, H.: n-Representability problem for reduced density matrices. J. Math. Phys. 8, 2063–2081 (1967) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices. Lecture Notes in Chemistry, vol. 72. Springer, Berlin (2000) MATHGoogle Scholar
  13. 13.
    Keren, S., Kfir, H., Kanter, I.: Possible sets of autocorrelations and the simplex algorithm. J. Phys. A 39, 4161–4171 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113, 1–25 (2003) MathSciNetGoogle Scholar
  15. 15.
    Crawford, J., Torquato, S., Stillinger, F.H.: Aspects of correlation function realizability. J. Chem. Phys. 119, 7065–7074 (2003) CrossRefADSGoogle Scholar
  16. 16.
    Stillinger, F.H., Torquato, S.: Pair correlation function realizability: lattice model implications. J. Phys. Chem. B 108, 19589 (2004) CrossRefGoogle Scholar
  17. 17.
    Stillinger, F.H., Torquato, S.: Realizability issues for iso-g(2) processes. Mol. Phys. 103, 2943–2949 (2005) CrossRefADSGoogle Scholar
  18. 18.
    Torquato, S., Stillinger, F.H.: New conjectural lower bounds on the optimal density of sphere packings. Exp. Math. 15, 307–331 (2006) MATHMathSciNetGoogle Scholar
  19. 19.
    Ambartzumian, R.V., Sukiasian, H.S.: Inclusion-exclusion and point processes. Acta Appl. Math. 22, 15–31 (1991) MathSciNetGoogle Scholar
  20. 20.
    Kuna, T., Lebowitz, J.L., Speer, E.R.: Necessary and sufficient conditions for realizability of point processes, in preparation Google Scholar
  21. 21.
    Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions, II, Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Imperial College Press, London (1999) Google Scholar
  23. 23.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975) MATHGoogle Scholar
  24. 24.
    Yamada, M.: Geometrical study of the pair distribution function in the many-body problem. Prog. Theor. Phys. 25, 579–594 (1961) MATHCrossRefADSGoogle Scholar
  25. 25.
    Simon, B.: The P(φ)2 Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974) Google Scholar
  26. 26.
    Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27, 1491–1494 (1983) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Goldstein, S., Lebowitz, J.L., Speer, E.: Large deviations for a point process of bounded variability. Markov Process. Relat. Fields 12, 235–256 (2006) MathSciNetGoogle Scholar
  28. 28.
    Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Fernández, R., Procacci, A., Scoppola, B.: The analyticity region of the hard sphere gas: improved bounds. J. Stat. Phys. 128, 1139–1143 (2007) CrossRefADSGoogle Scholar
  30. 30.
    Penrose, O.: Convergence of fugacity expansions for classical systems. In: Bak, T. (ed.) Statistical Mechanics: Foundations and Applications. Proceedings of the I.U.P.A.P. Meeting, Copenhagen, 1966. Benjamin, New York (1967) Google Scholar
  31. 31.
    Greenberg, W.: Thermodynamic states of classical systems. Commun. Math. Phys. 22, 259–268 (1971) MATHCrossRefADSGoogle Scholar
  32. 32.
    Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988) MATHGoogle Scholar
  33. 33.
    Varadhan, R.: private communication Google Scholar
  34. 34.
    Koralov, L.: Existence of pair potential corresponding to specified density and pair correlation. Lett. Math. Phys. 71, 135–148 (2005) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Koralov, L.: An inverse problem for Gibbs fields with hard core potential. Lett. Math. Phys. 48, 053301 (2007) MathSciNetGoogle Scholar
  36. 36.
    Caglioti, E., Kuna, T., Lebowitz, J.L., Speer, E.R.: Point processes with specified low order correlations. Markov Process. Relat. Fields 12, 257–272 (2006) MathSciNetGoogle Scholar
  37. 37.
    Costin, O., Lebowitz, J.L.: On the construction of particle distribution with specified single and pair densities. J. Phys. Chem. 108, 19614–19618 (2004) Google Scholar
  38. 38.
    Kuna, T., Lebowitz, J.L., Speer, E.R.: in preparation Google Scholar
  39. 39.
    Aizenman, M., Goldstein, S., Lebowitz, J.L.: Bounded fluctuations and translation symmetry breaking in one-dimensional particle systems. J. Stat. Phys. 103, 601–618 (2000) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA
  3. 3.Department of PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations