Journal of Statistical Physics

, Volume 129, Issue 5–6, pp 1055–1080 | Cite as

Fluctuation Properties of the TASEP with Periodic Initial Configuration

  • Alexei Borodin
  • Patrik L. Ferrari
  • Michael Prähofer
  • Tomohiro Sasamoto
Article

Abstract

We consider the joint distributions of particle positions for the continuous time totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm determinants with a kernel defining a signed determinantal point process. We then consider certain periodic initial conditions and determine the kernel in the scaling limit. This result has been announced first in a letter by one of us (Sasamoto in J. Phys. A 38:L549–L556, 2005) and here we provide a self-contained derivation. Connections to last passage directed percolation and random matrices are also briefly discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  3. 3.
    Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121, 291–317 (2005) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process. Int. Math. Res. Pap. rpm002 (2007) Google Scholar
  5. 5.
    Deift, P.: Universality for mathematical and physical systems. arXiv:math-ph/0603038 (2006) Google Scholar
  6. 6.
    Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain I. Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Ferrari, P.L.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Commun. Math. Phys. 252, 77–109 (2004) MATHCrossRefADSGoogle Scholar
  9. 9.
    Ferrari, P.L.: Shape fluctuations of crystal facets and surface growth in one dimension. Ph.D. thesis, Technische Universität München. http://tumb1.ub.tum.de/publ/diss/ma/2004/ferrari.html (2004)
  10. 10.
    Ferrari, P.L., Prähofer, M.: One-dimensional stochastic growth and Gaussian ensembles of random matrices. Markov Process. Relat. Fields 12, 203–234 (2006) Google Scholar
  11. 11.
    Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38, L557–L561 (2005) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B 553, 601–643 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Hough, J.B., Krishnapur, M., Peres, Y., Virag, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003) MATHADSMathSciNetGoogle Scholar
  17. 17.
    Johansson, K.: Random matrices and determinantal processes. In: Bovier, A., Dunlop, F., van Enter, A., den Hollander, F., Dalibard, J. (eds.) Mathematical Statistical Physics. Lecture Notes of the Les Houches Summer School 2005, vol. LXXXIII, pp. 1–56. Elsevier, Amsterdam (2006) Google Scholar
  18. 18.
    Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986) MATHCrossRefADSGoogle Scholar
  19. 19.
    Karlin, S., McGregor, L.: Coincidence probabilities. Pac. J. 9, 1141–1164 (1959) MATHMathSciNetGoogle Scholar
  20. 20.
    Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. arXiv:math.CA/9602214 (1996) Google Scholar
  21. 21.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) MATHGoogle Scholar
  22. 22.
    Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98, 167–212 (2003) MATHMathSciNetGoogle Scholar
  23. 23.
    Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  24. 24.
    Nagao, T., Sasamoto, T.: Asymmetric simple exclusion process and modified random matrix ensembles. Nucl. Phys. B 699, 487–502 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Øksendal, B.K.: Stochastic Differential Equations, 5th ed. Springer, Berlin (1998) MATHGoogle Scholar
  27. 27.
    Prähofer, M.: Stochastic surface growth. Ph.D. thesis, Ludwig-Maximilians-Universität, München. http://edoc.ub.uni-muenchen.de/archive/00001381 (2003)
  28. 28.
    Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000) CrossRefADSGoogle Scholar
  29. 29.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002) MATHCrossRefGoogle Scholar
  30. 30.
    Rákos, A., Schütz, G.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511–530 (2005) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rákos, A., Schütz, G.: Bethe Ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Relat. Fields 12, 323–334 (2006) Google Scholar
  32. 32.
    Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on ℤd. Commun. Math. Phys. 140, 417–448 (1991) MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Rost, H.: Non-equilibrium behavior of a many particle system: density profile and local equilibrium. Z. Wahrsch. Verw. Gebiete 58, 41–53 (1981) MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005) CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997) MATHCrossRefGoogle Scholar
  36. 36.
    Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2000) CrossRefGoogle Scholar
  37. 37.
    Soshnikov, A.: Determinantal random fields. In: Francoise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 47–53. Elsevier, Oxford (2006) Google Scholar
  38. 38.
    Spohn, H.: Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Physica A 369, 71–99 (2006) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Stembridge, J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83, 96–131 (1990) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996) MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Viennot, G.: Une forme géométrique de la correspondence de Robinson-Schensted. In: Combinatoire et Représentation du Groupe Symétrique. Lecture Notes in Mathematics, vol. 579, pp. 29–58. Springer, Berlin (1977) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexei Borodin
    • 1
  • Patrik L. Ferrari
    • 2
  • Michael Prähofer
    • 2
  • Tomohiro Sasamoto
    • 3
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Technische Universität MünchenGarchingGermany
  3. 3.Chiba UniversityChibaJapan

Personalised recommendations