Advertisement

Journal of Statistical Physics

, Volume 129, Issue 1, pp 1–26 | Cite as

Convergence to Equilibrium for the Discrete Coagulation-Fragmentation Equations with Detailed Balance

  • José A. Cañizo
Article

Abstract

Under the condition of detailed balance and some additional restrictions on the size of the coefficients, we identify the equilibrium distribution to which solutions of the discrete coagulation-fragmentation system of equations converge for large times, thus showing that there is a critical mass which marks a change in the behavior of the solutions. This was previously known only for particular cases as the generalized Becker–Döring equations. Our proof is based on an inequality between the entropy and the entropy production which also gives some information on the rate of convergence to equilibrium for solutions under the critical mass.

Keywords

Strong Convergence Entropy Production Critical Mass Stat Phys Positive Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys. 65(3), 203–230 (1979) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernouilli 5(1), 3–48 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, A., Carrillo, J.A., Desvillettes, L., Dolbeault, J., Jüngel, A., Lederman, C., Markowich, P.A., Toscani, G., Villani, C.: Entropies and equilibria of many-particle systems: an essay on recent research. Mon. Math. 142(1–2), 35–43 (2004) zbMATHCrossRefGoogle Scholar
  4. 4.
    Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker–Döring equations for arbitrary initial data. Proc. Roy. Soc. Edinb. Sect. A 108, 109–116 (1988) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ball, J.M., Carr, J.: The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation. J. Stat. Phys. 61, 203–234 (1990) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Ball, J.M., Carr, J., Penrose, O.: The Becker–Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104, 657–692 (1986) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bonilla, L.L., Carpio, A., Neu, J.C.: Igniting homogeneous nucleation. In: F.J. Higuera, J. Jiménez, J.M. Vega (eds.) Simplicity, Rigor and Relevance in Fluid Mechanics. CIMNE, Barcelona (2004) Google Scholar
  8. 8.
    Cañizo Rincón, J.A.: Asymptotic behaviour of solutions to the generalized Becker–Döring equations for general initial data. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2064), 3731–3745 (2005) CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Cañizo Rincón, J.A.: Some problems related to the study of interaction kernels: coagulation, fragmentation and diffusion in kinetic and quantum equations. PhD thesis. Universidad de Granada (2006) Google Scholar
  10. 10.
    Carr, J.: Asymptotic behaviour of solutions to the coagulation-fragmentation equations, I: the strong fragmentation case. Proc. Roy. Soc. Edinb. Sect. A 121, 231–244 (1992) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Carr, J., da Costa, F.P.: Asymptotic behavior of solutions to the coagulation-fragmentation equations, II: weak fragmentation. J. Stat. Phys. 77, 98–123 (1994) ADSMathSciNetGoogle Scholar
  12. 12.
    Carrillo, J., Desvillettes, L., Fellner, K.: Exponential decay towards equilibrium for the inhomogeneous Aizenman–Bak model. Preprint Google Scholar
  13. 13.
    da Costa, F.P.: Asymptotic behaviour of low density solutions to the generalized Becker–Döring equations. Nonlinear Differ. Equ. Appl. 5, 23–37 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Drake, R.L.: A general mathematical survey of the coagulation equation. In: Hidy, G.M., Brock, J.R. (eds.) Topics in Current Aerosol Research (Part 2). International Reviews in Aerosol Physics and Chemistry, vol. 3, pp. 201–376. Pergamon, New York (1972) Google Scholar
  15. 15.
    Grabe, M., Neu, J., Oster, G., Nollert, P.: Protein interactions and membrane geometry. Biophys. J. 84, 654–868 (2003) Google Scholar
  16. 16.
    Jabin, P.-E., Niethammer, B.: On the rate of convergence to equilibrium in the Becker–Döring equations. J. Differ. Equ. 191, 518–543 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Laurençot, P., Mischler, S.: Convergence to equilibrium for the continuous coagulation-fragmentation equation. Bull. Sci. Math. 127(3), 179–190 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Laurençot, P., Mischler, S.: On coalescence equations and related models. In: Modeling and Computational Methods for Kinetic Equations. Model. Simul. Sci. Eng. Technol., pp. 321–356. Birkhäuser, Boston (2004) Google Scholar
  19. 19.
    Neu, J., Cañizo, J.A., Bonilla, L.L.: Three eras of micellization. Phys. Rev. E 66, 061406 (2002) CrossRefADSGoogle Scholar
  20. 20.
    Penrose, O.: The Becker–Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 19, 243–267 (1997) CrossRefADSGoogle Scholar
  21. 21.
    Penrose, O., Lebowitz, J.L.: Towards a Rigorous Theory of Metastability. Studies in Statistical Mechanics, vol. VII. North-Holland, Amsterdam (1979) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.CEREMADEUniversity of Paris-DauphineParisFrance

Personalised recommendations