Journal of Statistical Physics

, Volume 128, Issue 3, pp 781–798 | Cite as

A New Method for the Solution of Models of Biological Evolution: Derivation of Exact Steady-State Distributions

Article

Abstract

We investigate well-known models of biological evolution and address the open problem of how construct a correct continuous analog of mutations in discrete sequence space. We deal with models where the fitness is a function of a Hamming distance from the reference sequence. The mutation-selection master equation in the discrete sequence space is replaced by a Hamilton-Jacobi equation for the logarithm of relative frequencies of different sequences. The steady-state distribution, mean fitness and the variance of fitness are derived. All our results are asymptotic in the large genome limit. A variety of important biological and biochemical models can be solved by this new approach.

Key Words

evolution extract solution Eigen model Hamilton-Jacobi equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wright, Proceedings of the sixth International Congress on Genetics 1:356 (1932).Google Scholar
  2. 2.
    E. Baake, M. Baake and H. Wagner, Phys. Rev. Lett. 78:559 (1997).CrossRefADSGoogle Scholar
  3. 3.
    S. Wright, Proc. Natl. Acad. Sci. USA 31:382 (1945).MATHCrossRefADSGoogle Scholar
  4. 4.
    M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).Google Scholar
  5. 5.
    L.S. Tsimring, H. Levin and D. A. Kessler, Phys. Rev. Lett. 76:4440 (1996).CrossRefADSGoogle Scholar
  6. 6.
    F. Bagnoli and M. Bezzi, Phys. Rev. Lett. 79:3302 (1997).CrossRefADSGoogle Scholar
  7. 7.
    U. Gerland and T. Hwa, J. Mol. Evol. 55:386 (2002).CrossRefGoogle Scholar
  8. 8.
    W. Peng, U. Gerland, T. Hwa and H. Levin, Phys. Rev. Lett. 90:088103 (2003).CrossRefADSGoogle Scholar
  9. 9.
    N. M. Shnerb, Y. Louzoun, E. Bettelheim and S. Solomon, Proc. Natl. Acad. Sci. USA 97:10322 (2000).MATHCrossRefADSGoogle Scholar
  10. 10.
    M. Eigen, Naturwissenschaften 58:465 (1971).CrossRefGoogle Scholar
  11. 11.
    M. Eigen, J. McCaskill and P. Schuster, Adv. Chem. Phys. 75:149 (1989).CrossRefGoogle Scholar
  12. 12.
    M. Eigen and C. Biebricher, Virus Research 107:117 (2005).CrossRefGoogle Scholar
  13. 13.
    J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper Row, NY, 1970).Google Scholar
  14. 14.
    E. Baake and H. Wagner, Genet. Res. 78:93 (2001).CrossRefGoogle Scholar
  15. 15.
    D. B. Saakian and C.-K. Hu, Phys. Rev. E 69:021913 (2004).CrossRefADSGoogle Scholar
  16. 16.
    D. B. Saakian and C.-K. Hu, Phys. Rev. E 69:046121 (2004).CrossRefADSGoogle Scholar
  17. 17.
    D. B. Saakian, H. Khachatryan and C.-K. Hu, Phys. Rev. E 70:041908 (2004).CrossRefADSGoogle Scholar
  18. 18.
    E. Baake, M. Baake and A. Bover, J. Math. Biol. 50:83 (2005).MATHCrossRefGoogle Scholar
  19. 19.
    D. B. Saakian and C.-K. Hu, Proc. Natl. Acad. Sci. USA 109:4935 (2006).CrossRefADSGoogle Scholar
  20. 20.
    D. B. Saakian, E. Munoz, C.-K. Hu and M. W. Deem, Phys. Rev. E 73:041913 (2006).CrossRefADSGoogle Scholar
  21. 21.
    C. J. Thompson and J. L. McBride, Mathematical Biosciences 21:127 (1974).MATHCrossRefGoogle Scholar
  22. 22.
    B. L. Jones, R. H. Enns, and R. S. Rangnekar, Bull. Math. Biol. 38:15 (1975).Google Scholar
  23. 23.
    J. Swetina and P. Schuster,Biophys. Chem. 16:329 (1982).CrossRefGoogle Scholar
  24. 24.
    D. M. Weinreich, N. F. Delaney, M. A. DePristo and D. L. Hartl, Science 312:111 (2006).CrossRefADSGoogle Scholar
  25. 25.
    Kun, A., Santos, M., and Szathmáry, E., Nature Genetics, 37:1008–1011 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Berg, S. Willmann and M. Lassig, BMC Evolutionary Biology 4:42 (2004).CrossRefGoogle Scholar
  27. 27.
    J. Hermisson, M. Baake and H. Wagner, J. Stat. Phys. 102:315 (2001).MATHCrossRefGoogle Scholar
  28. 28.
    B. Drossel, Advances in Physics 50:209 (2001).CrossRefADSGoogle Scholar
  29. 29.
    W. Li, Phys. Rev. A 43:5240 (1991).CrossRefADSGoogle Scholar
  30. 30.
    P. W. Messer, P. F. Arndt and M. Lassig, Phys. Rev. Lett. 94:138103 (2005).CrossRefADSGoogle Scholar
  31. 31.
    M. Lassig, L. Peliti and F. Tria, Europhys. Lett. 62:446 (2003)CrossRefADSGoogle Scholar
  32. 32.
    N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amstersdam, NY, 2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Institute of PhysicsAcademia Sinica, NankangTaipeiTaiwan

Personalised recommendations