Journal of Statistical Physics

, Volume 128, Issue 1–2, pp 269–286 | Cite as

A New Mechanism for Collective Migration in Myxococcus xanthus

  • J. Starruß
  • Th. Bley
  • L. Søgaard-Andersen
  • A. Deutsch
Article

Abstract

Myxobacteria exhibit a complex life cycle characterized by a sequence of cell patterns that culminate in the formation of three-dimensional fruiting bodies. This paper provides indications that the specific cell shape of myxobacteria might play an important role in the different morphogenetic processes during the life cycle. We introduce a new mechanism for collective migration that can explain the formation of aligned cell clusters in myxobacteria. This mechanism does not depend on cell cooperation, and in particular it does not depend on diffusive signals guiding cell motion.

A Cellular Potts Model (CPM) that captures the rod cell shape, cell stiffness and active motion of myxobacteria is presented. By means of numerical simulations of model cell populations where cells interact via volume exclusion, we provide evidence of a purely mechanical mechanism for collective migration, which is controlled by the cells' length-to-width aspect ratio.

Keywords

Cellular Potts Model cellular automata collective migration rod-shaped cells myxobacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alber, M. Kiskowski and Y. Jiang, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria. Physica D 191:343–358 (2004).MATHCrossRefADSGoogle Scholar
  2. 2.
    U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys. Rev. Lett. 89:078101 (2002).Google Scholar
  3. 3.
    J. H. Bussemarker, A. Deutsch and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78:5018–5021 (1997).Google Scholar
  4. 4.
    A. Deutsch and S. Dormann, Cellular automaton modeling of biological pattern formation - characterization, applications, and analysis. Birkhauser, Boston (2005).Google Scholar
  5. 5.
    M. Dworkin and D. Kaiser, Myxobacteria II. American Society for Microbiology (1993).Google Scholar
  6. 6.
    F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69:2013–2016 (1992).CrossRefADSGoogle Scholar
  7. 7.
    O. Igoshin, A. Mogilner, R. D. Welch, K. Dale and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling. Proc. Natl. Acad. Sci. U.S.A. 98:14913–14918 (2001).Google Scholar
  8. 8.
    O. A. Igoshin, R. Welch, D. Kaiser and G. Oster, Waves and aggregation patterns in myxobacteria. Proc. Natl. Acad. Sci. U.S.A. 101:4256–4261 (2004).Google Scholar
  9. 9.
    L. Jelsbak and L. Søgaard-Andersen, Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 99:2032–2037 (2002).Google Scholar
  10. 10.
    D. Kaiser, Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:45–54 (2003).CrossRefMathSciNetGoogle Scholar
  11. 11.
    D. Kaiser and C. Crosby, Cell movement and its coordination in swarms of Myxococcus xanthus. Cell. Motil. Cytoskeleton 3:227–245 (1983).Google Scholar
  12. 12.
    D. Kaiser and R. Yu, Reversing cell polarity: Evidence and hypothesis. Curr. Opin. Microbiol. 8:216–221 (2005).Google Scholar
  13. 13.
    R. Merks, J. Glazier, S. Brodsky, M. Goligorksy and S. Newman, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289:44–54 (2006).Google Scholar
  14. 14.
    A. Mogilner and L. Edelstein-Keshet, Spatio-angular order in populations of self-aligning objects: formation of oriented patches. Physica D 89:346–367 (1996).Google Scholar
  15. 15.
    H. Othmer and P. Schaap, Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol. 5:175–282 (1998).Google Scholar
  16. 16.
    F. Peruani, A. Deutsch and M. Br, Non-equilibrium clustering of self-propelled rods. Phys. Rev. E 74:030904 (2006).Google Scholar
  17. 17.
    A. M. Rodriguez and A. M. Spormann, Genetic and molecular analysis of cglb, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:4381–390 (1999).Google Scholar
  18. 18.
    L. Søgaard-Andersen, Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr. Opin. Microbiol. 7:587–593 (2004).CrossRefGoogle Scholar
  19. 19.
    W. Shi and D. R. Zusman, The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. U.S.A. 90:3378–3382 (1993).Google Scholar
  20. 20.
    A. M. Spormann and D. Kaiser, Gliding movements in Myxococcus xanthus. J. Bacteriol. 177:5846–5852 (1995).Google Scholar
  21. 21.
    A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J. Appl. Math. 61:172–182 (2000).Google Scholar
  22. 22.
    H. Sun, Z. Yang and W. Shi, Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc. Nat. Acad. Sci. U.S.A. 96:15178–15783 (1999).Google Scholar
  23. 23.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75:1226–1229 (1995).Google Scholar
  24. 24.
    R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. U.S.A. 98:14907–14912 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Starruß
    • 1
  • Th. Bley
    • 2
  • L. Søgaard-Andersen
    • 3
  • A. Deutsch
    • 1
  1. 1.Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
  2. 2.Instiute of Food Technologies and Bioprocess EngineeringTechnische Universität DresdenDresdenGermany
  3. 3.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations