On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models?

  • Dirk Drasdo
  • Stefan Hoehme
  • Michael Block


We demonstrate that many collective phenomena in multi-cellular systems can be explained by models in which cells, despite their complexity, are represented as simple particles which are parameterized mainly by their physical properties. We mainly focus on two examples that nevertheless span a wide range of biological sub-disciplines: Unstructured cell populations growing in cell culture and growing cell layers in early animal development. While cultured unstructured cell populations would apriori been classified as particularly suited for a biophysical approach since the degree to which they are committed to a genetic program is expected to be modest, early animal development would be expected to mark the other extreme—here the degree of determinism according to a genetic program would be expected to be very high. We consider a number of phenomena such as the growth kinetics and spatial structure formation of monolayers and multicellular spheroids, the effect of the presence of another cell type surrounding the growing cell population, the effect of mutations and the critical surface dynamics of monolayers. Different from unstructured cell populations, cells in early development and at tissue interfaces usually form highly organized structures. An example are tissue layers. Under certain circumstances such layers are observed to fold. We show that folding pattern again can largely be explained by physical mechanisms either by a buckling instability or active cell shape changes. The paper combines new and published material and aims at an overview of a wide range of physical aspects in unstructured populations and growing tissue layers.


individual cell based models agent-based models tumor growth monolayer growth cell populations biomechanics early development blastulation gastrulation 


  1. 1.
    S. Huang and D. Ingber, The structural and mechanical complexity of cell-growth control. Nature Cell Biol. 1:E131 (1999).Google Scholar
  2. 2.
    I. Salazar-Ciudad, J. Jernvall, and S. A. Newman, Mechanisms of pattern formation in development and evolution. Development 130:2027 (2003).Google Scholar
  3. 3.
    D. J. Tschumperlin, EGFR autocrine signaling in a compliant interstitial space: Mechanotransduction from the outside in. Cell Cycle 3:996 (2004).Google Scholar
  4. 4.
    A. Neagu, K. Jakab, R. Jamison, and G. Forgacs, Role of physical mechanisms in biological self-organization. Phys. Rev. Lett. 95:178104 (2005).ADSGoogle Scholar
  5. 5.
    G. Forgacs and S. Newmann, Biological Physics of the Developing Embryo (Cambridge University Press, Cambridge, 2005).Google Scholar
  6. 6.
    G. Helmlinger, P. Netti, H. Lichtenfeld, R. Melder, and R. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnol. 15:778 (1997).Google Scholar
  7. 7.
    C. Nelson, R. Jean, J. Tan, W. Liu, N. Sniadecki, A. Spector, and C. Chen, Mechanical control of tissue growth: Function follows form. Proc. Natl. Acad. Sci. (USA), 102:(2005).Google Scholar
  8. 8.
    D. Ingber, Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50:255 (2006).Google Scholar
  9. 9.
    D. Ingber, Mechanical control of tissue growth: Function follows form. Proc. Natl. Acad. Sci. (USA) 102:11571 (2005).ADSGoogle Scholar
  10. 10.
    L. D. Horb and J. M. Slack, Role of cell division in branching morphogenesis and differentiation of the embryonic pancreas. Int. J. Dev. Biol. 44:791 (2000).Google Scholar
  11. 11.
    B. Shraiman, Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad Sci. (USA) 102:3318 (2005).ADSGoogle Scholar
  12. 12.
    H. Lodish, A. Berk, P. Matsudaria, C. Kaiser, M. Krieger, M. Scott, S. Zipursky, and J. Darnell, Molecular Cell Biology (Freeman, New York, 2004).Google Scholar
  13. 13.
    H. Byrne, J. King, D. McElwain, and L. Preziosi, A two-phase model of solid tumor growth, Appl. Math. Lett., pp. 1–15 (2001).Google Scholar
  14. 14.
    C. Chen, H. Byrne and J. King, The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids, J. Math. Biol. 43:191 (2001).zbMATHMathSciNetGoogle Scholar
  15. 15.
    U. Schwarz, N. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. Safran, Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization, Biophys. J. 83:1380 (2002).ADSGoogle Scholar
  16. 16.
    H. Byrne and L. Prezziosi, Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol. 20:341 (2003).zbMATHGoogle Scholar
  17. 17.
    I. Bischofs and U. Schwarz, Effect of poisson ratio on cellular structure formation. Phys. Rev. Lett. 95:068102 (2005).ADSGoogle Scholar
  18. 18.
    I. Schiffer, S. Gebhard, C. Heimerdinger, A. Heling, J. Hast, U. Wollscheid, B. Seliger, B. Tanner, S. Gilbert, T. Beckers, S. Baasner, W. Brenner, C. Spangenberg, D. Prawitt, T. Trost, W. Schreiber, B. Zabel, M. Thelen, H. Lehr, F. Oesch, and J. Hengstler, Switching off her-2/ neu in a tetracyline-controlled mouse tumor model leads to apoptosis and tumorsize-dependent remission. Cancer Res. 63:7221 (2003).Google Scholar
  19. 19.
    M. Alison and C. Sarraf, Understanding Cancer (Cambridge University Press, Cambridge, 1998).Google Scholar
  20. 20.
    B. Sayan, G. Ince, A. Sayan, and M. Ozturk, Napo as a novel apoptosis marker. J. Cell Biol. 155:719 (2001).Google Scholar
  21. 21.
    J. Mombach and J. Glazier, Single cell motion in aggregates of embryonic cells. Phys. Rev. Lett. 76:3032 (1996).ADSGoogle Scholar
  22. 22.
    J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham and J. Käs, The optical stretcher: A novel laser tool to micromanipulate cells. Biophys. J. 81:767 (2001).Google Scholar
  23. 23.
    J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84:2071 (2003).Google Scholar
  24. 24.
    C. Laforsch, W. Ngwa, W. Grill, and R. Tollrian, An acoustic microscopy technique reveals hidden morphological defenses in daphnia. Proc. Natl. Acad. Sci. (USA) 101:15911 (2005).ADSGoogle Scholar
  25. 25.
    S. Chesla, P. Selvaraj and C. Zhu, Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 75:1553 (1998).Google Scholar
  26. 26.
    X. Zhang, A. Chen, D. Leon, H. Li. E. Noiri, V. Moy, and M. Goligorsky, Atomic force microscopy measurement of leukocyte-endothelial interaction. Am. J. Physiol. Heart Circ. Physiol. 286:H359 (2004).Google Scholar
  27. 27.
    J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo, Single-cell based mathematical models to the spatio-temporal pattern formation in multi-cellular systems, Cytometry A, in press (2006).Google Scholar
  28. 28.
    U. Braumann, J. Kuska, J. Einenkel, L. Horn, M. Loeffler, and M. Hoeckel, Three-dimensional reconstruction and quantification of cervical carcinoma invasion fronts from histological serial sections. IEEE Trans. Med. Imaging 24:1286 (2005).Google Scholar
  29. 29.
    D. Helbing, Traffic and related self-driven many particle systems. Rev. Mod. Phys. 73:1067 (2001).ADSGoogle Scholar
  30. 30.
    D. Drasdo, R. Kree and J. McCaskill, Monte-carlo approach to tissue-cell populations. Phys. Rev. E 52:6635 (1995).ADSGoogle Scholar
  31. 31.
    J. Moreira and A. Deutsch, Cellular automata models of tumour development—a critical review. Adv. Complex Syst. 5: 247 (2002).zbMATHMathSciNetGoogle Scholar
  32. 32.
    M. S. Alber, M. A. Kiskowski, J. A. Glazier, and Y. Jiang, On cellular automaton approaches to modeling biological cells. In Mathematical Systems Theory in Biology, Communication, and Finance, J. Rosenthal and D. S. Gilliam (eds.) (IMA 142, Springer-Verlag, New York, 2002), pp. 1–40.Google Scholar
  33. 33.
    D. Drasdo, On selected individual-based approaches to the dynamics of multicellular systems. In Multiscale modeling, J. L. W. Alt and M. Griebel (eds.) (Birkhäuser, 2003).Google Scholar
  34. 34.
    T. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H. Hentschel, M. Alber, J. A. Glazier, S. A. Newman, and J. A. Izaguirre, A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2:273 (2005).Google Scholar
  35. 35.
    R. Merks and J. Glazier, A cell-centered approach to developmental biology. Physica A 352:113 (2005).ADSGoogle Scholar
  36. 36.
    A. Bru, J. Pastor, I. Fernaud, I. Bru, S. Melle, and C. Berenguer, Super-rough dynamics of tumor growth. Phys. Rev. Lett. 81:4008 (1998).ADSGoogle Scholar
  37. 37.
    D. Balkovetz, Evidence that hepatocyte growth factor abbrogates contact inhibition of mitosis in madin-darby canine kidney cell monolayers. Life Sci. 64:1393 (1999).Google Scholar
  38. 38.
    L. Kunz-Schughart, Multicellular tumor spheroids: Intermediates between monolayer culture and in-vivo tumor. Cell Biol. Int. 23:157 (1999).Google Scholar
  39. 39.
    M. Locke, M. Heywood, S. Fawell, and I. Mackenzie, Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res. 65:8944 (2005).Google Scholar
  40. 40.
    W. Mueller-Klieser, A review on cellular aggregates in cancer research. Cancer Res. Clin. Oncol. 113:101 (1987).Google Scholar
  41. 41.
    R. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240:177 (1988).ADSGoogle Scholar
  42. 42.
    M. Santini and G. Rainaldi, Three-dimensional spheroid model in tumor biology. Pathobiology 67:148 (1999).Google Scholar
  43. 43.
    S. Gilbert, Develoment (Sinauer Associates Inc., New York, 1997).Google Scholar
  44. 44.
    L. Wolpert, Principles of Development (Oxford Univ. Press, Oxford, 1998).Google Scholar
  45. 45.
    C. Booth and C. Potten, Gut instincts, thoughts on intestinal epithelial stem cells. Clin. Invest. 105:1493 (2000).Google Scholar
  46. 46.
    C. Potten and M. Loeffier, Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001 (1990).Google Scholar
  47. 47.
    D. Drasdo and M. Löffler, Individual-based models on growth and folding in one-layered tissues: Intestinal crypts and blastulation. Nonl. Anal. 47:245 (2001).zbMATHGoogle Scholar
  48. 48.
    C. Farrell, K. Rex, S. Kaufman, C. Dipalma, J. Chen, S. Scully and D. Layey, Effects of keratinocyte growth factor in the squamous epithelium of the upper aero-digestive tract of normal and irradiated mice. Int. J. Radiat. Biol. 75:609 (1999).Google Scholar
  49. 49.
    C. Klein, T. Blankenstein, O. Schmidt-Kittler, M. Petronio, B. Polzer, N. Stoecklein, and G. Riethmuller, Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360:683 (2002).Google Scholar
  50. 50.
    H. Eagle, Nutriention needs of mammalian cells in tissue culture. Science 122:43 (1955).Google Scholar
  51. 51.
    R. Ham, Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. 53:288 (1965).ADSGoogle Scholar
  52. 52.
    I. Hayashi and G. Sato, Replacement of serum by hormones permits growth of cells in defined medium. Nature 239:132 (1976).ADSGoogle Scholar
  53. 53.
    G. Sato, A. Pardee and D. Sirbasku, Growth of Cells in Hormonally Defined Media (Cold Spring Harbour Laboratory, 1982).Google Scholar
  54. 54.
    K. Burrige, Substrate adhesions in normal and transformed fibroblasts: Organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts. Cancer Review 4:18 (1986).Google Scholar
  55. 55.
    A. Bru, S. Albertos, J. Subiza, J. Garcia-Arsenio, and I. Bru, The universal dynamics of tumor growth. Biophys. J. 85: 2948 (2003).ADSGoogle Scholar
  56. 56.
    L. Davidson, M. Koehl, R. Keller, and G. Oster, How do sea urchins invaginate? using bio-mechanics to distinguish between mechanisms of primary invagination. Development 121:2005 (1995).Google Scholar
  57. 57.
    M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophys. J. 28:312 (1999).Google Scholar
  58. 58.
    J. Piper, R. Swerlick and C. Zhu, Determining force dependence of two-dimensional receptorligand binding affinity by centrifugation. Biophys. J. 74:492 (1998).Google Scholar
  59. 59.
    D. Beysens, G. Forgacs, and J. Glazier, Cell sorting is analogous to phase ordering in fluids. Proc. Natl. Acad. Sci. USA 97:9467 (2000).ADSGoogle Scholar
  60. 60.
    M. Schienbein, K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys. Rev. E 49:5462 (1994).ADSGoogle Scholar
  61. 61.
    R. A. Gatenby and P. K. Maini, Mathematical oncology: Cancer summed up. Nature 421:321 (2003).ADSGoogle Scholar
  62. 62.
    J. Fidorra, T. Mielke, J. Booz, and L. Feinendegen, Cellular and nuclear volume of human cells during cell cycle. Radiat. Environ. Biophys. 19:205 (1981).Google Scholar
  63. 63.
    D. Landau, Theory of elasticity (Pergamon, 1975).Google Scholar
  64. 64.
    R. Carpick, D. F. Ogletree, and M. Salmeron, A gerneral equation for fitting contact area and friction vs. load measurements. J. Colloid Interface Sci. 211:395 (1999).Google Scholar
  65. 65.
    Y.-S. C. et al.:Johnson-kendall-roberts theory applied to living cells. Phys. Rev. Lett. 280:312 (1999).Google Scholar
  66. 66.
    D. Drasdo and S. Hoehme, A single-cell based model to tumor growth in-vitro: Monolayers and spheroids. Phys. Biol. 2:133 (2005).ADSGoogle Scholar
  67. 67.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087 (1953).ADSGoogle Scholar
  68. 68.
    D. Drasdo and G. Forgacs, Modelling the interplay of generic and genetic mechanisms in cleavage, blastulation and gastrulation. Dev. Dyn. 219:182 (2000).Google Scholar
  69. 69.
    D. Drasdo and S. Höhme, Individual-based approaches to birth and death in avascular tumors. Math. and Comp. Modelling 37:1163 (2003).zbMATHGoogle Scholar
  70. 70.
    M. Allen and D. Tildersley, Computer Simulation of Liquids (Oxford Science Publ., Oxford, 1987).zbMATHGoogle Scholar
  71. 71.
    D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).Google Scholar
  72. 72.
    M. Eden, A two-dimensional growth process. In Proceedings of the 4th. Berkeley Symposium on Mathematics and Probability, vol. IV, J. Neyman (ed.) (University of California Press, 1961), pp. 223–239.Google Scholar
  73. 73.
    R. Weinberg, The biology of cancer (Garland Science, New York and Oxford, 2007).Google Scholar
  74. 74.
    J. Xin, Front propagation in heterogeneous media. SIAM Rev. 42:161 (2000).MathSciNetGoogle Scholar
  75. 75.
    K. Swanson, E. Alvord, and J. Murray, quantitativ model for differential motility of gliomas in gey and white matter. Cell Prolif. 33:317 (2000).Google Scholar
  76. 76.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, The cell (Garland Science Publ., New York, 2002).Google Scholar
  77. 77.
    J. Galle, M. Loeffler, and D. Drasdo, Modelling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in-vitro. Biophys. J. 88: 62 (2005).Google Scholar
  78. 78.
    G. Schaller and M. Meyer-Hermann, Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model. Phys. Rev. E. 71:051910 (2005).ADSMathSciNetGoogle Scholar
  79. 79.
    J. Piper, R. Swerlick, and C. Zhu, Determining force dependence of two-dimensional receptorligand binding affinity by centrifugation. Biophys. J. 74:492 (1998).CrossRefGoogle Scholar
  80. 80.
    J. Dhont, An introduction to dynamics of colloids (Elsevier, Amsterdam, 1996).Google Scholar
  81. 81.
    L. Li, J. Backer, A. Wong, E. Schwanke, B. Stewart, and M. Pasdar, Bcl-2 expression decreases cadherin-mediated cell-cell adhesion. J. Cell Sci. 116:3687 (2003).Google Scholar
  82. 82.
    M. Warchol, Cell density and n-cadherin interaction regulates cell proliferation in the sensory epithelia of the inner ear. J. Neurosci. 22:2607 (2002).Google Scholar
  83. 83.
    P. Klekotka, S. Santoro, A. Ho, S. Dowdy, and M. Zutter, Mammary epithelial cell-cycle progression via the αβ-integrin. Am. J. Path. 159:983 (2001).Google Scholar
  84. 84.
    L. Junqueira and J. Carneiro, Basic histology (McGraw Hill, 2005).Google Scholar
  85. 85.
    D. Stupack and D. Cheresh, Get a ligand, get a life: Integrins, signaling and cell survival. J. Cell Sci. 115:3729 (2002).Google Scholar
  86. 86.
    K. Orford. C. Orford, and S. W. Byers, Exogenous expression of β-catenin regulates contact inhibition, anchorage-independent growth, anoikis and radiation-induced cell cycle arrest. J. Cell Biol. 146:855 (1999).Google Scholar
  87. 87.
    Z. Yan, M. Chen, M. Perucho, and E. Friedman, Oncogenic ki-ras but not oncogenic ha-ras blocks integrin? 1-chain maturation in colon epithelial cells. J. Biol. Chem. 272:2607 (1997).Google Scholar
  88. 88.
    P. Lu, Q. Lu, A. Rughetti, and J. Taylor-Papadimitriou, bcl-2 overexpression inhibits cell death and promotes the morphogenesis, but not tumorigenesis of human mammary epithelial cells. J. Cell Biol. 129:1363 (1995).Google Scholar
  89. 89.
    R. Bates, N. Edwards, and J. Yates, Spheroids and cell survival. Crit. Rev. Oncol./Hematol. 36:61 (2000).Google Scholar
  90. 90.
    M. Santini, G. Rainaldi, and P. Indovina, Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit. Rev. Oncology/Hematology 36:75 (2000).Google Scholar
  91. 91.
    C. Chen, M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric control of cell life and death. Science 276: 1425 (1997).Google Scholar
  92. 92.
    N. Gloushankova, N. Alieva, M. Krendel, E. Bonder, H. Feder, J. Vasiliev, and I. Gelfand, Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but not in their ras-transformed descendants. Proc. Natl. Acad. Sci. USA 94:879 (1997).ADSGoogle Scholar
  93. 93.
    A. Barabasi and H. Stanley, Fractal concepts in surface growth (Cambridge University Press, Cambridge, 1995).zbMATHGoogle Scholar
  94. 94.
    E. Moro, Internal fluctuations effects on fisher waves. Phys. Rev. Lett. 87:238303 (2001).ADSGoogle Scholar
  95. 95.
    T. Halpin-Healy and Y. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254:215 (1995).ADSGoogle Scholar
  96. 96.
    M. Block, E. Schoell, and D. Drasdo, Classifying the expansion kinetics and critical surface dynamics of growing cell populations, Cond. mat. physics/0610146 (2006).Google Scholar
  97. 97.
    D. Drasdo, Coarse graining in simulated cell populations. Adv. Complex Syst. 8:319 (2005).zbMATHMathSciNetGoogle Scholar
  98. 98.
    J. Ramasco, J. Lopez, and M. Rodriguez, Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett. 84:2199 (2000).ADSGoogle Scholar
  99. 99.
    F. Family and T. Vicsek, Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model. J. Phys. A: Math. Gen. 18:L75 (1985).ADSGoogle Scholar
  100. 100.
    J. Buceta and J. Galeano, Comments on the article—the universal dynamics of tumor growth. Biophys. J. 88:3734 (2005).Google Scholar
  101. 101.
    A. Wong and B. Gumbiner, Adhesion-independent mechanism for suppression of tumor cell invasion by e-cadherin. J. Cell Biol. 161:1191 (2003).Google Scholar
  102. 102.
    P. Friedl, Prespecification and plasticity: Shifting mechanisms of cell migration. Curr. Opin. Cell. Biol. 16:14 (2004).Google Scholar
  103. 103.
    J. Freyer and R. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in emt6/ro spheroids during growthregulation of growth. J. Cell. Physiol. 124:516 (1985).Google Scholar
  104. 104.
    J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygene supply. Cancer Res. 46:3504 (1986).Google Scholar
  105. 105.
    J. Casciari, S. Sotirchos, and R. Sutherland, Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48:3905 (1988).Google Scholar
  106. 106.
    J. Casciari, S. Sotirchos, and R. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration and extracellular ph. J. Cell. Physiol. 151:386 (1992).Google Scholar
  107. 107.
    Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. Freyer, A multiscale model for avascular tumor growth. Biophys. J. 89:3884 (2005).Google Scholar
  108. 108.
    E. Stott, N. Britton, J. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumor growth using the potts model. Math. Comput. Modelling 30:183 (1999).Google Scholar
  109. 109.
    S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Biol. 2:0035 (2002).Google Scholar
  110. 110.
    J. Folkman and M. Hochberg, Self-regulation of growth in three dimensions. J. Exp. Med. 138:745 (1973).Google Scholar
  111. 111.
    J. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47:2128 (1993).ADSGoogle Scholar
  112. 112.
    T. Newman, Modeling multi-cellular systems using sub-cellular elements. Math. Biosciences Eng. 2:613 (2005).zbMATHGoogle Scholar
  113. 113.
    N. Wright and M. Alison, The Biology of Epithelial Cell Population (Clarendon Press, Oxford, 1984).Google Scholar
  114. 114.
    D. Drasdo, Buckling instabilities in one-layered growing tissues. Phys. Rev. Lett. 84:4244 (2000).ADSGoogle Scholar
  115. 115.
    S. Hörstadius, The mechanics of sea urchin development, studied by operative methods. Biol. Rev. 14:132 (1939).Google Scholar
  116. 116.
    K. Dan, Cytoembryology of echinoderms and amphibia. Int. Rev. Cytol 9:321 (1960).CrossRefGoogle Scholar
  117. 117.
    L. Wolpert and E. Mercer, An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. Exp. Cell Res. 30:280 (1963).Google Scholar
  118. 118.
    M. Leptin and B. Grunewald, Cell shape changes during gastrulation in drosophila. Development 110:73 (1990).Google Scholar
  119. 119.
    J. Gere and S. Timoshenko, Mechanics of Materials, 4th edn. (PWS-Publishing Co., Boston, 1997).Google Scholar
  120. 120.
    J. Dallon and H. Othmer, How cellular movement determines the collective force generated by the dictyostelium discoideum slug. J. theor. Biol. 231:203 (2004).MathSciNetGoogle Scholar
  121. 121.
    E. Palsson and H. Othmer, A model for individual and collective cell movement in dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 12:10448 (2000).Google Scholar
  122. 122.
    Z. Kam, J. Minden, D. Agard, J. Sedat, and M. Leptin, Drosophila gastrulation: Analysis of cell shape changes in living embryos by three-dimensional fluorescence mircroscopy. Development 112:365 (1991).Google Scholar
  123. 123.
    A. Cairnie and B. Millen, Fission of crypts in the small intestine of the irradiated mouse. Cell Tissue Kinet. 8:89 (1975).Google Scholar
  124. 124.
    K. Araki, T. Ogata, M. Kobayashi, and R. Yatani, A morphological study on the histogenesis of human colorectal hyperplastic crypts. Gastroenterology 109:1468 (1995)Google Scholar
  125. 125.
    A. Bru, S. Albertos, J. L. Garcia-Asenjo, and I. Bru, Pinning of tumoral growth by enhancement of the immune response. Phys. Rev. Lett. 92:238101 (2004).ADSGoogle Scholar
  126. 126.
    Y. Boucher, L. Baxter, and R. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Res. 50:4478 (1990).Google Scholar
  127. 127.
    Y. Boucher, J. Salehi, B. Witwer, and R. Jain, Interstitial fluid pressure in intracranial tumors in patients and in rodents. Br. J. Cancer 75:829 (1997).Google Scholar
  128. 128.
    E. Filipski, F. Delaunay, V. King, B. C. MW Wu, A. Grechez-Cassiau, C. Guettier, M. Hastings, and F. Levi, Effects of chronic jet lag on tumor progression in mice. Cancer Res. 64:7879 (2004).Google Scholar
  129. 129.
    A. Goriely and M. B. Amar, Differential growth and instability in elastic shells. Phys. Rev. Lett. 94:198103 (2005).ADSGoogle Scholar
  130. 130.
    J. Dunphy, Wound healing (MedCom-Press, New York, 1978).Google Scholar
  131. 131.
    P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203:317 (2000).Google Scholar
  132. 132.
    D. Drasdo and M. Kruspe, Emergence of cell migration and aggregation strategies in a simulated evolutionary process. Adv. Complex Syst. 8 (2005).Google Scholar
  133. 133.
    T. Alarcon. H. Byrne, and P. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229:395 (2004).MathSciNetGoogle Scholar
  134. 134.
    K. Frame and W. Hu, A model for density-dependent growth of anchorage-dependent mammalian cells. Biotechnol. Bioengineering 32:1062 (1988).CrossRefGoogle Scholar
  135. 135.
    K. Hawboldt, N. Kalogerakis, and L. Behie, A cellular automaton model for micro-carrier cultures. Biotechnol. Bioengineering 43:90 (1993).Google Scholar
  136. 136.
    L. Arakelyan, Y. Merbl, and Z. Agur, Vessel maturation effects on tumour growth: Validation of a computer model in implanted human ovarian carcinoma spheroids. Eur. J. Cancer 41:159 (2005).Google Scholar
  137. 137.
    C. Basdevant, J. Clairambault, and F. Levi, Optimisation of time-scheduled regimen for anti-cancer drug infusion. Math. Modelling Numerical Anal. 39:1069 (2005).zbMATHMathSciNetGoogle Scholar
  138. 138.
    B. Ribba, K. Marron, Z. Agur, T. A. T, and P. Maini, A mathematical model of doxorubicin treatment efficacy for non-hodgkin's lymphoma: Investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67:79 (2005).MathSciNetGoogle Scholar
  139. 139.
    B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer and its use in analyzing irradiation therapies. Theor. Biol. Med. Model 3:7 (2006).Google Scholar
  140. 140.
    N. Grabe and K. Neuber, A multicellular systems biology model predicts epidermal morphology, kinetics and ca+-flow. Bioinformatics 21:3541 (2005).Google Scholar
  141. 141.
    S. Hoehme, J. Hengstler, M. Brulport, M. Schaefer, A. Bauer, R. Gebhardt, and D. Drasdo, Mathematical modelling of liver regeneration after intoxification with ccl4, Chemico-Biological Interactions, in revision (2007).Google Scholar
  142. 142.
    G. Michalopoulos and M. DeFrances, Liver regeneration. Science 276:60 (1997).Google Scholar
  143. 143.
    R. Goldstein and S. Langer, Nonlinear dynamics of stiff polymers. Phys. Rev. Lett. 75:1094 (1995).ADSGoogle Scholar
  144. 144.
    M. Doi and S. F. Edwards, The theory of polymer dynamics (Oxford University Press, 1986).Google Scholar
  145. 145.
    U. Seifert, Adhesion of vesicles in two dimensions. Phys. Rev. A 43:6803 (1991).ADSMathSciNetGoogle Scholar
  146. 146.
    D. Kessler, J. Koplik, and H. Levine, Pattern selection in fingered growth, phenomena. Adv. Phys. 37:255 (1988).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematics Institute and Center for Systems BiologyUniversity of WarwickCoventryUK
  2. 2.French National Institute for Reasearch in Computer Science and Control (INRIA), RocquencourtLe Chesnay CedexFrance
  3. 3.Interdisciplinary Centre for BioinformaticsUniversity of LeipzigLeipzigGermany
  4. 4.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  5. 5.Institute for Theoretical PhysicsTechnical University of BerlinBerlinGermany

Personalised recommendations