Journal of Statistical Physics

, Volume 127, Issue 3, pp 575–607

Singular Perturbation of Quantum Stochastic Differential Equations with Coupling Through an Oscillator Mode

Article

Abstract

We consider a physical system which is coupled indirectly to a Markovian resevoir through an oscillator mode. This is the case, for example, in the usual model of an atomic sample in a leaky optical cavity which is ubiquitous in quantum optics. In the strong coupling limit the oscillator can be eliminated entirely from the model, leaving an effective direct coupling between the system an the resevoir. Here we provide a mathematically rigorous treatment of this limit as a weak limit of the time evolution and observables on a suitably chosen exponential domain in Fock space. The resulting effective model may contain emission and absorption as well as scattering interactions.

Keywords

singular perturbation quantum stochastic differential equations Hudson–Parthasarathy quantum stochastic calculus adiabatic elimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, A. Frigerio and Y. Lu, The weak coupling limit as a quantum functional central limit. Commun. Math. Phys. 131:537–570 (1990).MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    L. Accardi, J. Gough and Y. Lu, On the stochastic limit for quantum theory. Rep. Math. Phys. 36:155–187 (1995).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Barchielli, Continual measurements in quantum mechanics and quantum stochastic calculus, in Open Quantum Systems III: Recent Developments, S. Attal, A. Joye, C.A. Pillet, eds. (Springer, 2006), pp. 207–292.Google Scholar
  4. 4.
    V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42:171–201 (1992).MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    P. Billingsley, Convergence of Probability Measures (John Wiley & Sons Inc., New York, 1968).MATHGoogle Scholar
  6. 6.
    L. M. Bouten, R. Van Handel and M. R. James, An introduction to quantum filtering. preprint, arXiv:math.OC/0601741 (2006).Google Scholar
  7. 7.
    A. C. Doherty, A. S. Parkins, S. M. Tan and D. F. Walls, Motional states of atoms in cavity QED. Phys. Rev. A 57:4804–4817 (1998).CrossRefADSGoogle Scholar
  8. 8.
    J. A. Dunningham, H. M. Wiseman and D. F. Walls, Manipulating the motion of a single atom in a standing wave via feedback. Phys. Rev. A 55:1398–1411 (1997).CrossRefADSGoogle Scholar
  9. 9.
    F. Fagnola, On quantum stochastic differential equations with unbounded coefficients. Probab. Th. Rel. Fields 86:501–516 (1990).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. W. Gardiner, Adiabatic elimination in stochastic systems. I. Formulation of methods and application to few-variable systems. Phys. Rev. A 29:2814–2822 (1984).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000).MATHGoogle Scholar
  12. 12.
    J. Gough, A new approach to non-commutative white noise analysis. C. R. Acad. Sci. Paris Sér. I Math. 326:981–985 (1998).MATHMathSciNetGoogle Scholar
  13. 13.
    J. Gough, Quantum white noises and the master equation for Gaussian reference states. Russ. J. Math. Phys. 10:142–148 (2003).MATHMathSciNetGoogle Scholar
  14. 14.
    J. Gough, Quantum flows as Markovian limit of emission, absorption and scattering interactions. Commun. Math. Phys. 254:489–512 (2005). See quant-ph/0309056 for errata.MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    J. Gough, Quantum Stratonovich calculus and the quantum Wong-Zakai theorem. J. Math. Phys. 47:113,509 (2006).CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. L. Hudson and K. R. Parthasarathy, Quantum Itô's formula and stochastic evolutions. Commun. Math. Phys. 93:301–323 (1984).MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. Marcus, Modeling and analysis of stochastic differential equations driven by point processes. IEEE Trans. Inf. Th. 24:164–172 (1978).MATHCrossRefGoogle Scholar
  18. 18.
    E. J. McShane, Stochastic Calculus and Stochastic Models (Academic Press, 1974).Google Scholar
  19. 19.
    P. A. Meyer, Quantum Probability for Probabilists (Springer, Berlin, 1993).MATHGoogle Scholar
  20. 20.
    K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, Basel, 1992).MATHGoogle Scholar
  21. 21.
    S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Dover, Mineola, New York, 2005).Google Scholar
  22. 22.
    L. K. Thomsen, S. Mancini and H. M. Wiseman, Continuous quantum nondemolition feedback and unconditional atomic spin squeezing. J. Phys. B: At. Mol. Opt. Phys. 35:4937 (2002).CrossRefADSGoogle Scholar
  23. 23.
    F. Verhulst, Methods and Applications of Singular Perturbations (Springer, 2005).Google Scholar
  24. 24.
    P. Warszawski and H. M. Wiseman, Adiabatic elimination in compound quantum systems with feedback. Phys. Rev. A 63:013,803 (2001).Google Scholar
  25. 25.
    H. M. Wiseman, Quantum theory of continuous feedback. Phys. Rev. A 49:2133–2150 (1994).CrossRefADSGoogle Scholar
  26. 26.
    H. M. Wiseman and G. J. Milburn, Quantum theory of field-quadrature measurements. Phys. Rev. A 47:642–662 (1993).CrossRefADSGoogle Scholar
  27. 27.
    K. S. Wong, M. J. Collett and D. F. Walls, Atomic juggling using feedback. Opt. Commun. 137:269–275 (1997).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Computing and InformaticsNottingham Trent UniversityNottinghamUK
  2. 2.Physical Measurement and Control 266-33California Institute of TechnologyPasadenaUSA

Personalised recommendations