Journal of Statistical Physics

, Volume 126, Issue 6, pp 1201–1207 | Cite as

Boundary Dissipation in a Driven Hard Disk System

  • Pedro L. GarridoEmail author
  • G. Gallavotti


We perform a simulation with the aim of checking the existence of a well defined stationary state for a two dimensional system of driven hard disks when energy dissipation takes place at the system boundaries and no bulk impurities are present.


Nonequilibrium statistical mechanics driven hard disk systems computer simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. T. Yuge, N. Ito and A. Shimizu, Nonequilibrium molecular dynamics simulation of electric conduction. J. Phys. Soc. Jpn. 74:1895–1898 (2005).CrossRefADSGoogle Scholar
  2. 2.
    2. G. Ayton, E. Evans and D. Searles, A local fluctuation theorem. J. Chem. Phys. 115:2033–2037 (2001).CrossRefADSGoogle Scholar
  3. 3.
    3. B. D. Todd, D. J. Evans and P. Daivis, Pressure tensor for inhomogeneous fluids. Phys. Rev. E 52:1627–1638 (1995); B. D. Todd and D. J. Evans, Temperature profile for Pouiseuille flow. 55:2800–2807 (1997).CrossRefADSGoogle Scholar
  4. 4.
    4. F. Bonetto, N. Chernov and J. L. Lebowitz, (Global and local) fluctuations in phase-space contraction in deteministic stationary nonequilibrium. Chaos 8:823–833 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    5. G. Gallavotti, Nonequilibrium thermodynamics? in Meteorological and Geophysical Gluid Dynamics, edited by Wilfried Schroeder, (Science, Bremen, 2004) (and cond-mat/0301172) and in edited by G. Gallavotti, F. Bonetto, and G. Gentile, Aspects of the Ergodic, Qualitative and Statistical Properties of Motion (Springer-Verlag, Berlin, 2005), pp. 397–409.Google Scholar
  6. 6.
    6. G. Gallavotti, Stationary nonequilibrium statistical mechanics, in Encyclopedia of Mathematical Physics, Vol. 3, edited by J. P. Francoise, G. L. Naber and T. S. Tsun, (Elsevier, 2006), pp.530–539, (cond-mat/0510027) and Irreversibility time scale. Chaos 16:023130 (+7) (2006) (and cond-mat/0601049).Google Scholar
  7. 7.
    7. R. Klages, Microscopic chaos and transport in thermostated dynamical systems, nlin/0309069.Google Scholar
  8. 8.
    8. D. Ruelle, Nonequilibrium statistical mechanics and entropy production in a classical infinite system of rotators, cond-mat/0603760. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute ‘Carlos I’ for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la MateriaUniversity of GranadaGranadaSpain
  2. 2.Dipartimento di Fisica, INFNUniversità di Roma “La Sapienza,”RomaItaly

Personalised recommendations