Journal of Statistical Physics

, Volume 127, Issue 1, pp 107–131 | Cite as

Fluctuation Theorem for Currents and Schnakenberg Network Theory

  • David Andrieux
  • Pierre Gaspard


A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.


nonequilibrium steady state entropy production affinities thermodynamic forces fluctuation theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Onsager, Phys. Rev. 37:405 (1931).zbMATHCrossRefADSGoogle Scholar
  2. T. De Donder and P. Van Rysselberghe, Affinity (Stanford University Press, Menlo Park CA, 1936).Google Scholar
  3. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, 1967).Google Scholar
  4. G. Nicolis and I. Prigogine, Proc. Natl. Acad. Sci. (USA) 68:2102 (1971).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. G. Nicolis, J. Stat. Phys. 6:195 (1972).CrossRefGoogle Scholar
  6. M. Malek-Mansour and G. Nicolis, J. Stat. Phys. 13:197 (1975).CrossRefMathSciNetGoogle Scholar
  7. G. Nicolis and J.W. Turner, Physica A 89:326 (1977).CrossRefADSGoogle Scholar
  8. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).zbMATHGoogle Scholar
  9. Luo Jiu-li, C. Van den Broeck and G. Nicolis, Z. Phys. B - Condensed Matter 56:165 (1984).CrossRefGoogle Scholar
  10. J. Schnakenberg, Rev. Mod. Phys. 48:571 (1976).CrossRefADSMathSciNetGoogle Scholar
  11. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd Ed. (Springer-Verlag, 1990).Google Scholar
  12. H. J. Kreuser and S. H. Payne, Theoretical Approaches to the Kinetics of Adsorption, Desorption and Reactions at Surfaces, in M. Borowko (ed.), Computational Methods in Surface and Colloid Science (Dekker, New York, 2000) p. 439.Google Scholar
  13. G. Kirchhoff, Poggendorffs ann. Phys. Chem. 72:495 (1847).Google Scholar
  14. A. Einstein, Investigations on the theory of the Brownian movement (Dover, New York, 1956).zbMATHGoogle Scholar
  15. T. L. Hill and O. Kedem, J. Theor. Biol. 10:399 (1966).CrossRefGoogle Scholar
  16. T. L. Hill, J. Theor. Biol. 10:442 (1966).CrossRefGoogle Scholar
  17. T. L. Hill, Thermodynamics for Chemists and Biologists (Addison-Wesley, Reading MA, 1968).Google Scholar
  18. G. F. Oster and C. A. Desoer, J. Theor. Biol. 32:219 (1971).CrossRefGoogle Scholar
  19. G. F. Oster, A. S. Perelson and A. Katchalsky, Nature 234:393 (1971).CrossRefADSGoogle Scholar
  20. D.-Q. Jiang, M. Qian and M.-P. Qian, Mathematical Theory of Nonequilibrium Steady States (Springer, Berlin, 2004).zbMATHGoogle Scholar
  21. M.-P. Qian, C. Qian and M. Qian, Sci. Sinica (Series A) 27:470 (1984).zbMATHGoogle Scholar
  22. P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65:1693 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. J. R. Dorfman and P. Gaspard, Phys. Rev. E 51:28 (1995).CrossRefADSMathSciNetGoogle Scholar
  24. P. Gaspard and J. R. Dorfman, Phys. Rev. E 52, 3525 (1995).CrossRefADSMathSciNetGoogle Scholar
  25. S. Tasaki and P. Gaspard, J. Stat. Phys. 81:935 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  26. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge UK, 1998).zbMATHGoogle Scholar
  27. P. Gaspard, I. Claus, T. Gilbert and J. R. Dorfman, Phys. Rev. Lett. 86:1506 (2001).CrossRefADSGoogle Scholar
  28. C. Jarzynski, Phys. Rev. Lett. 78:2690 (1997).CrossRefADSGoogle Scholar
  29. C. Jarzynski, J. Stat. Mech. P09005 (2004).Google Scholar
  30. D. J. Evans, E. G. D. Cohen and G. P. Morriss, Phys. Rev. Lett. 71:2401 (1993).zbMATHCrossRefADSGoogle Scholar
  31. D. J. Evans and D. J. Searles, Phys. Rev. E 50:1645 (1994).CrossRefADSGoogle Scholar
  32. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995).CrossRefADSGoogle Scholar
  33. G. Gallavotti, Phys. Rev. Lett. 77:4334 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. D. Ruelle, J. Stat. Phys. 95:393 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  35. J. Kurchan, J. Phys. A: Math. Gen. 31:3719 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. G. E. Crooks, Phys. Rev. E 60:2721 (1999).CrossRefADSGoogle Scholar
  37. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  38. C. Maes, J. Stat. Phys. 95:367 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  39. C. Maes and K. Netočný, J. Stat. Phys. 110:269 (2003).zbMATHCrossRefGoogle Scholar
  40. P. Gaspard, J. Chem. Phys. 120:8898 (2004).CrossRefADSGoogle Scholar
  41. U. Seifert, Phys. Rev. Lett. 95:040602 (2005).CrossRefADSGoogle Scholar
  42. M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker and R. C. Jaklevic, Phys. Rev. B 43:1146 (1991).CrossRefADSGoogle Scholar
  43. D. Andrieux and P. Gaspard, J. Chem. Phys. 121:6167 (2004).CrossRefADSGoogle Scholar
  44. D. Andrieux and P. Gaspard, J. Stat. Mech.: Th. Exp. P01011 (2006).Google Scholar
  45. H. Spohn, Rev. Mod. Phys. 53:569 (1980).CrossRefADSMathSciNetGoogle Scholar
  46. E. Helfand, Phys. Rev. 119:1 (1960).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Nonlinear Phenomena and Complex SystemsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations