Advertisement

Journal of Statistical Physics

, Volume 128, Issue 1–2, pp 111–138 | Cite as

A Theoretical Approach to Actin Filament Dynamics

  • Jifeng Hu
  • Anastasios Matzavinos
  • Hans G. OthmerEmail author
Article

Abstract

Dynamic control of the actin network in eukaryotic cells plays an essential role in their movement, but to date our understanding of how the network properties are controlled in space and time is still rudimentary. For example, how the cell maintains the pools of monomeric actin needed for a rapid response to signals, how the filament length distribution is controlled, and how the actin network properties are modulated by various bundling and severing proteins to produce the mechanical response is not known. Here we address the simplest aspect of this, which is to understand the temporal evolution of the length distribution in vitro in order to understand what the relevant time scales are for establishment of a time-invariant distribution. Surprisingly, we find that there are very long-lived intermediate length distributions that are not exponential. The results shed light on the time scale needed to observe genuine steady-state distributions, and emphasize the necessity of control molecules for modulating the time scale.

Keywords

cell motility actin filaments mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Carlier, V. Laurent, J. Santolini, R. Melki, D. Didry, G. X. Xia, Y. Hong, N. H. Chua and D. Pantaloni, Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility. J. Cell Biol. 136(6):1307–1322 (1997).CrossRefGoogle Scholar
  2. 2.
    H. Chen, B. W. Bernstein, and J. R. Bamburg, Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25(1):19–23 (2000). Review.CrossRefGoogle Scholar
  3. 3.
    L. P. Cramer, M. Siebert and T. J. Mitchison, Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: Implications for the generation of motile force. J. Cell Biol. 136(6):1287–1305 (1997).CrossRefGoogle Scholar
  4. 4.
    R. Dickinson, L. Caro and D. Purich, Force generation by cytoskeletal filament end-tracking proteins. Biophys. J. 87:2838–2854 (2004).CrossRefGoogle Scholar
  5. 5.
    L. Edelstein-Keshet and G. B. Ermentrout, Models for the length distributions of actin filaments: I. simple polymerization and fragmentation. Bull. Math. Biol. 60(3):449–475 (1998).zbMATHCrossRefGoogle Scholar
  6. 6.
    I. Fujiwara, S. Takahashi, H. Tadakuma, T. Funatsu and S. Ishiwata, Microscopic analysis of polymerization dynamics with individual actin filaments. Nat. Cell Biol. 4(9):666–673 (2002).CrossRefGoogle Scholar
  7. 7.
    F. Gerbal, P. Chaikin, Y. Rabin and J. Prost, An elastic analysis of listeria monocytogenes propulsion. Biophys. J. 79(5):2259–2275 (2000).Google Scholar
  8. 8.
    T. L. Hill, Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates. Biophys. J. 44:285–288 (1983).Google Scholar
  9. 9.
    T. Kato, Perturbation Theory for Linear Operators. (Springer-Verlag, Berlin, Germany/Heidelberg, Germany/London, UK etc. 1966).zbMATHGoogle Scholar
  10. 10.
    P. Kuhlman, Dynamic changes in the length distribution of actin filaments during polymerization can be modulated by barbed end capping proteins. Cell Motility Cytoskeleton 61:1–8 (2005).CrossRefGoogle Scholar
  11. 11.
    L. Limozin, M. Barmann and E. Sackmann, On the organization of self-assembled actin networks in giant vesicles. Eur. Phys. J. E (2003).Google Scholar
  12. 12.
    L. M. Machesky and R. H. Insall, Scar1 and the related wiskott-aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8(25):1347–1356 (1998).CrossRefGoogle Scholar
  13. 13.
    A. Mogilner, On the edge: Modeling protrusion. Curr. Opin. Cell Biol. 17:1–8 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Mogilner and G. Oster, Cell motility driven by actin polymerization. Biophys. J. 71(6):3030–3045 (1996).Google Scholar
  15. 15.
    A. Mogilner and G. Oster, Force generation by actin polymerization II: The elastic ratchet and tethered filaments. Biophys. J. 84:1591–1605 (2003).Google Scholar
  16. 16.
    K. Moriyama and I. Yahara, Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix. EMBO J. 18(23):6752–6761 (1999).CrossRefGoogle Scholar
  17. 17.
    R. D. Mullins, J. A. Heuser, and T. A. Pollard, The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95(11):6181–6186 (1998).CrossRefADSGoogle Scholar
  18. 18.
    F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Protein. (Academic Press, 1975).Google Scholar
  19. 19.
    H. G. Othmer and L. E. Scriven, Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32:507–537 (1971).CrossRefGoogle Scholar
  20. 20.
    A. van Oudenaarden and J. A. Theriot, Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat. Cell Biol. 1(8):493–499 (1999).CrossRefGoogle Scholar
  21. 21.
    C. S. Peskin, G. M. Odell and G. F. Oster, Cellular motions and thermal fluctuations: The Brownian ratchet. Biophys. J. 65(1):316–324 (1993).Google Scholar
  22. 22.
    T. D. Pollard, L. Blanchoin, and R. D. Mullins, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545–576 (2000). Review.CrossRefGoogle Scholar
  23. 23.
    T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465 (2003).CrossRefGoogle Scholar
  24. 24.
    D. Sept, J. Xu, T. D. Pollard and J. A. McCammon, Annealing accounts for the length of actin filaments formed by spontaneous polymerization. Biophys. J. 77(6):2911–2919 (1999).CrossRefGoogle Scholar
  25. 25.
    T. M. Svitkina and G. G. Borisy, Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145(5):1009–1026 (1999).CrossRefGoogle Scholar
  26. 26.
    T. M. Svitkina and G. G. Borisy, Progress in protrusion: The tell-tale scar. Trends Biochem. Sci. 24(11):432–436 (1999). Review.CrossRefGoogle Scholar
  27. 27.
    M. D. Welch, A. Mallavarapu, J. Rosenblatt and T. J. Mitchison, Actin dynamics in vivo. Curr. Opin. Cell Biol. 9(1):54–61 (1997).CrossRefGoogle Scholar
  28. 28.
    E. G. Yarmola and M. R. Bubb, Profilin: Emerging concepts and lingering misconceptions. Trends Biochem. Sci. 31(4):198–205 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jifeng Hu
    • 1
  • Anastasios Matzavinos
    • 1
  • Hans G. Othmer
    • 1
    Email author
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations