Journal of Statistical Physics

, Volume 128, Issue 1–2, pp 447–483 | Cite as

Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka–Volterra Models

  • Mauro MobiliaEmail author
  • Ivan T Georgiev
  • Uwe C Täuber


We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka–Volterra type interactions defined on a d-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka–Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.


Population dynamics spatio-temporal patterns stochastic fluctuations nonequilibrium phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Lotka, Proc. Natl. Acad. Sci. U.S.A. 6:410 (1920); J. Amer. Chem. Soc. 42:1595 (1920).Google Scholar
  2. 2.
    V. Volterra, Mem. Accad. Lincei 2:31 (1926); Leçcons sur la théorie mathématique de la lutte pour la vie (Gauthiers-Villars, Paris, 1931).Google Scholar
  3. 3.
    Theoretical Ecology, edited by R. M. May (Sinauer Associates, Sunderland, 1981); Population Regulation and Dynamics, Proceedings of a Royal Society discussion meeting, edited by M. P. Hassel and R. M. May. The Royal Society, London (1990); R. M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 1973).Google Scholar
  4. 4.
    H. Haken, Synergetics. 3rd ed., (Springer-Verlag, New York, 1983).Google Scholar
  5. 5.
    D. Neal, Introduction to Population Biology (Cambridge University Press, Cambridge, 2004).Google Scholar
  6. 6.
    J. Maynard Smith, Models in Ecology (Cambridge University Press, Cambridge, 1974).zbMATHGoogle Scholar
  7. 7.
    J. D. Murray, Mathematical Biology Vols. I and II (Springer-Verlag, New York, 2002).Google Scholar
  8. 8.
    A. N. Kolmogorov, Sulla Teoria di Volterra della Lotta per l’Esistezza. Giorn. Instituto Ital. Attuari 7:74–80 (1936).Google Scholar
  9. 9.
    N. S. Goel, S. C. Maitra and E. W. Montroll, Rev. Mod. Phys. 43:231 (1971).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    G. Picard and T. W. Watson, Phys. Rev. Lett. 48:1610 (1982).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998).zbMATHGoogle Scholar
  12. 12.
    R. M. May and W. Leonard, SIAM J. Appl. Math. 29:243 (1975).CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Durrett, SIAM Rev. 41:677 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Elton and M. Nicholson, J. Anim. Ecol. 11:215 (1942).CrossRefGoogle Scholar
  15. 15.
    P. Rohani, R. M. May and M. P. Hassell, J. Theor. Biol. 181:97 (1996); Modeling Spatiotemporal Dynamics in Ecology, edited by J. Bascompte and R. V. Solé, (Springer, 1998).Google Scholar
  16. 16.
    J. E. Satulovsky and T. Tomé, Phys. Rev. E 49:5073 (1994).CrossRefADSGoogle Scholar
  17. 17.
    A. Lipowski and D. Lipowska, Physica A 276:456 (2000); A. Lipowski, Phys. Rev. E 60:5179 (1999); M. Kowalick, A. Lipowski, and A. L. Ferreira, ibid. 66:066107 (2002).Google Scholar
  18. 18.
    T. Antal and M. Droz, Phys. Rev. E 63:056119 (2001).CrossRefADSGoogle Scholar
  19. 19.
    A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94:218102 (2005).CrossRefADSGoogle Scholar
  20. 20.
    S. R. Dunbar, J. Math. Biol. 17:11 (1983); Trans. Amer. Math. Soc. 268:557 (1984).Google Scholar
  21. 21.
    A. Provata, G. Nicolis and F. Baras, J. Chem. Phys. 110:8361 (1999); G. A. Tsekouras and A. Provata, Phys. Rev. E 65:016204 (2001).Google Scholar
  22. 22.
    H. Matsuda, N. Ogita, A. Sasaki and K. Sato, Prog. Theor. Phys. 88:1035 (1992).CrossRefADSGoogle Scholar
  23. 23.
    L. Frachebourg and P. L. Krapivsky, J. Phys. A 31:L287 (1998); L. Frachebourg, P. L. Krapivsky, and E. Ben-Naim, Phys. Rev. E 54:6186 (1996); Phys. Rev. Lett. 77:2125 (1996); G. Szabó and T. C. Czáran, Phys. Rev. E 63:061904 (2001); ibid. 64:042902 (2002); G. Szabó and G. A. Sznaider, ibid. 69:031911 (2004).Google Scholar
  24. 24.
    E. Bettelheim, O. A. Nadav, and N. M. Shnerb, Physica E 9:600 (2001); N. M. Shnerb and O. Agam, e-print cond-mat/9903408.Google Scholar
  25. 25.
    N. Boccara, O. Roblin and M. Roger, Phys. Rev. E 50:4531 (1994).CrossRefADSGoogle Scholar
  26. 26.
    A. F. Rozenfeld and E. V. Albano, Physica A 266:322 (1999); R. Monetti, A. F. Rozenfeld and E. V. Albano, Physica A 283:52 (2000); A. F. Rozenfeld and E. V. Albano, Phys. Rev. E 63:061907 (2001); A. F. Rozenfeld and E. V. Albano, Phys. Lett. A 332:361 (2004).Google Scholar
  27. 27.
    M. Droz and A. Pekalski, Phys. Rev. E 63:051909 (2001).CrossRefADSGoogle Scholar
  28. 28.
    W. Kinzel, Percolation structures and concepts. Ann. Israel Phys. Soc. 5:425 (1983); P. Grassberger, J. Phys. A 29:7013 (1996).Google Scholar
  29. 29.
    H. Hinrichsen, Adv. Phys. 49:815 (2000); H. K. Janssen and U. C. Täuber, Ann. Phys. (NY) 315:147 (2005).Google Scholar
  30. 30.
    H. K. Janssen, J. Stat. Phys. 103:801 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Mobilia, I. T. Georgiev and U. C. Täuber, Phys. Rev. E 73:040903(R) (2006); e-print:q-bio.PE/0508043.Google Scholar
  32. 32.
    D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations. 3rd ed., (Oxford University Press, Oxford, 1999).zbMATHGoogle Scholar
  33. 33.
    J. Riordan, C. R. Doering and D. ben-Avraham, Phys. Rev. Lett. 75:565 (1995).CrossRefADSGoogle Scholar
  34. 34.
    L. Pechenik and H. Levine, Phys. Rev. E 59:3893 (1999).CrossRefADSGoogle Scholar
  35. 35.
    Y. Fujii and M. Wadati, J. Phys. Soc. Jpn 66:3770 (1997); M. Mobilia and P.-A. Bares, Phys. Rev. E 63:036121 (2001).Google Scholar
  36. 36.
    Nonequilibrium Statistical Mechanics in One Dimension, edited by V. Privman. Cambridge University Press, Cambridge, (1997); F. C. Alcaraz, M. Droz, M. Henkel and V. Rittenberg, Ann. Phys. (N.Y.) 230:250 (1994); M. Henkel, E. Orlandini and J. Santos, ibid. 259:163 (1997); D. C. Mattis and M. L. Glasser, Rev. Mod. Phys. 70:979 (1998).Google Scholar
  37. 37.
    B. Schmittmann and R. K. P. Zia, in: Phase Transitions and Critical Phenomena, Vol. 17, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 1995).Google Scholar
  38. 38.
    Two movies (‘L256.mpg’ and ‘L512.mpg’) corresponding to the situation of Fig. 2 (but with λ = 2.1 and lattice sizes 256 × 256 and 512 × 512), as well as one movie (‘movie3.mpg’) corresponding to the situation of Fig. 3 (but with λ = 0.18 and lattice size 256 × 256) can be found at
  39. 39.
    H. K. Janssen, Z. Phys. B 42:151 (1981); P. Grassberger, Z. Phys. B 47:365 (1982).Google Scholar
  40. 40.
    U. C. Täuber, M. J. Howard, and B. P. Vollmayr-Lee, J. Phys. A: Math. Gen. 38:R79 (2005).zbMATHCrossRefGoogle Scholar
  41. 41.
    G. Ódor and N. Menyhárd, Physica D 168:305 (2002).CrossRefADSGoogle Scholar
  42. 42.
    O. Deloubrière, H. J. Hilhorst, and U. C. Täuber, Phys. Rev. Lett. 89:250601 (2002); H. J. Hilhorst, O. Deloubrière, M. J. Washenberger, and U. C. Täuber, J. Phys. A: Math. Gen. 37:7063 (2004).Google Scholar
  43. 43.
    F. van Wijland, Phys. Rev. E 63:022101 (2001).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Mauro Mobilia
    • 1
    • 2
    Email author
  • Ivan T Georgiev
    • 2
    • 3
  • Uwe C Täuber
    • 2
  1. 1.Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Department of Physics and Center for Stochastic Processes in Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgU.S.A.
  3. 3.Integrated Finance LimitedNew YorkU.S.A.

Personalised recommendations