Advertisement

Journal of Statistical Physics

, Volume 123, Issue 6, pp 1169–1181 | Cite as

On Conformal Field Theory of SLE(κ,ρ)

  • Kalle Kytölä
Article

Abstract

SLE(κ ρ), a generalization of chordal Schramm-Löwner evolution (SLE), is discussed from the point of view of statistical mechanics and conformal field theory (CFT). Certain ratios of CFT correlation functions are shown to be martingales. The interpretation is that SLE(κ ρ) describes an interface in a statistical mechanics model whose boundary conditions are created in the Coulomb gas formalism by vertex operators with charges α j = \(\alpha_j = \frac{\rho_j}{2 \sqrt{\kappa}}\). The total charge vanishes and therefore the partition function has a simple product form. We also suggest a generalization of SLE(κ ρ)

Keywords

SLE conformal field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bauer and D. Bernard, “Conformal field theories of stochastic Loewner evolutions” Commun. Math. Phys. 239: 493 (2003) [arXiv:hep-th/0210015].Google Scholar
  2. 2.
    M. Bauer and D. Bernard, “CFTs of SLEs: The radial case” Phys. Lett. B 583: 324 (2004) [arXiv:math-ph/0310032].Google Scholar
  3. 3.
    M. Bauer, D. Bernard and J. Houdayer, J. Stat. Mech. 0503 P001, (2005) [arXiv:math-ph/0411038].Google Scholar
  4. 4.
    M. Bauer, D. Bernard and K. Kytola, “Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales” J. Stat. Phys. Vol. 120 (5/6): 1125–1163 (2005) [arXiv:math-ph/0503024].Google Scholar
  5. 5.
    J. Cardy, “SLE(kappa, rho) and conformal field theory” [arXiv:math-ph/0412033].Google Scholar
  6. 6.
    M. Bauer and D. Bernard, “Conformal transformations and the SLE partition function martingale” Annales Henri Poincare 5: 289 (2004) [arXiv:math-ph/0305061].Google Scholar
  7. 7.
    W. Werner, “Random planar curves and Schramm-Loewner evolutions” In Lectures on probability theory and statistics, vol. 1840 of Lecture Notes in Math., 107–195. [arXiv:math.PR/0303354] Springer, Berlin, 2004.Google Scholar
  8. 8.
    W. Kager and B. Nienhuis, “A Guide to Stochastic Loewner Evolution and its Applications,” [arXiv:math-ph/0312056].Google Scholar
  9. 9.
    J. Cardy, “SLE for theoretical physicists,” Annals Phys. 318: 81 (2005) [arXiv:cond-mat/0503313].Google Scholar
  10. 10.
    G. Lawler, O. Schramm, W. Werner, “Conformal restriction. The chordal case” J. Amer. Math. Soc. vol. 16 (4): 917–955 (2003) [arXiv:math.PR/0209343].Google Scholar
  11. 11.
    J. Dubédat, “SLE(κ, ρ) martingales and duality” Ann. Probab. vol. 33 (1): 223-243 (2005) [arXiv:math.PR/0303128].Google Scholar
  12. 12.
    P. Di Francesco, P. Mathieu, D. Sénéchal: “Conformal Field Theory” Springer-Verlag New York, Inc., 1997Google Scholar
  13. 13.
    G. Felder, “BRST Approach To Minimal Models” Nucl. Phys. B 317: 215 (1989) [Erratum-ibid. B 324: 548 (1989)].Google Scholar
  14. 14.
    M. Bauer and D. Bernard, “SLE, CFT and zig-zag probabilities” in Proceedings of the conference ‘Conformal Invariance and Random Spatial Processes’, Edinburgh (2003), [arXiv:math-ph/0401019].Google Scholar
  15. 15.
    O. Schramm and S. Sheffield, “Contour lines of the two-dimensional discrete Gaussian free field” [arXiv:math.PR/0605337]Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations