Journal of Statistical Physics

, Volume 124, Issue 1, pp 191–205 | Cite as

Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

  • N. N. Leonenko
  • M. D. Ruiz-Medina


The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329–4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.


nonhomogeneous multidimensional Burgers equation quadratic external potential scaling laws spatiotemporal random fields strongly dependent random initial conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Simon. Functional Integration and Quantum Physics. Academic Press, New York (1979).zbMATHGoogle Scholar
  2. 2.
    M. Demuth and J.A. van Casteren. Stochastic Spectral Theory for Selfadjoint Operators. Birkhauser-Verlag, Basel (2000).zbMATHGoogle Scholar
  3. 3.
    M. Rosenblatt. Remarks on Burgers equation. J. Math. Phys. 24:1129–1136 (1968).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M. Rosenblatt. Scale renormalization and random solutions of Burgers equation. J. Appl. Prob. 24:328–338 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ya. G. Sinai. Two results concerning asymptotic behavior of the Burgers equation with force, J. Stat. Phys. 64:1–12 (1992).Google Scholar
  6. 6.
    S. Albeverio, S. A. Molchanov and D. Surgailis. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Prob. Theor. Rel. Fields 100:457–484 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Bulinski and S. A. Molchanov. Asymptotic Gaussianess of solutions of the Burgers equation with random initial conditions. Theory Probab. Appl. 36:217–235 (1991).Google Scholar
  8. 8.
    I. Deriev and N. Leonenko. Limit Gaussian behavior of the solutions of the multidimensional Burgers’ equation with weak-dependent initial conditions. Acta Applicandae Math. 47:1–18 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    N. Leonenko and E. Orsingher. Limit theorems for solutions of Burgers equation with Gaussian and non-Gaussian initial data. Theory Prob. Appl. 40:387–403 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. N. Leonenko, E. Orsingher and K. V. Rybasov. Limit distributions of solutions of multidimensional Burgers equation with random initial data, I and II. Ukrain. Math. J. 46:870–877 (1994) and 1003–1010. Random Ope. Stoch. Equ. 4:229–238.Google Scholar
  11. 11.
    N. N. Leonenko and W. A. Woyczynski. Exact parabolic asymptotics for singular nD Burgers random fields: Gaussian approximation. Stoch. Proc. Appl. 76:141–165 (1998a).Google Scholar
  12. 12.
    N. N. Leonenko and W. A. Woyczynski. Scaling limits of solutions of the heat equation for singular non-Gaussian data, J. Stat. Phys., 91:423–438 (1998b).Google Scholar
  13. 13.
    M. D. Ruiz-Medina, J. M. Angulo and V. V. Anh. Scaling limit solution of a fractional Burgers equation, Stoch. Proc. Appl. 93:285–300 (2001).Google Scholar
  14. 14.
    D. Surgailis and W. A. Woyczynski. Limit theorem for the Burgers equation initiated by data with long-range dependence, in Doukhan, P., Oppenheim, G. and Taqqu, M. S. (eds), Theory and Applications of Long-Range Dependence, pp. 507–523. Birkhäuser, Boston (2003).Google Scholar
  15. 15.
    V. V. Anh and N. N. Leonenko. Non-Gaussian scenarios for the heat equation with singular initial conditions. Stoch. Proc. Appl. 84:91–114 (1999).Google Scholar
  16. 16.
    V. V. Anh and N. N. Leonenko. Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104:1349–1387 (2001).Google Scholar
  17. 17.
    V. V. Anh and N. N. Leonenko. Renormalization and homogenization of fractional diffusion equations with random data. Prob. Theor. Rel. Fields 124:381–408 (2002).Google Scholar
  18. 18.
    V. V. Anh, N. N. Leonenko and L. M. Sakhno. Spectral properties of Burgers and KPZ turbulence. J. Stat. Physics, in press (2006).Google Scholar
  19. 19.
    V. H. Hoang and K. Khanin. Random Burgers equation and Lagrangian systems in noncompact domains. Nonlinearity 16:819–842 (2003).Google Scholar
  20. 20.
    H. Holden, T. Lindstrom, B. Oksendal, J. Uboe and T. S. Zhang. The Burgers equation with noisy force and the stochastic heat equation. Comm. Partial Diff. Eq. 19:119–141 (1994).Google Scholar
  21. 21.
    S. A. Molchanov, D. Surgailis and W. A. Woyczynski. The large-scale structure of the Universe and quasi-Voronoi tessellation of shock fronts in forced Burgers turbulence in R d. Ann. Appl. Prob. 7:220–223 (1997).Google Scholar
  22. 22.
    A. I. Saichev and W. A. Woyczynski. Evolution of Burgers turbulence in presence of external forces. J. Fluid Mech. 331:313–343 (1997).Google Scholar
  23. 23.
    W. A. Woyczynski. Burgers-KPZ Turbulence. Göttingen Lectures. Lecture Notes in Mathematics 1706. Springer-Verlag, Berlin (1998).Google Scholar
  24. 24.
    N. Leonenko. Limit Theorems for Random Fields with Singular Spectrum. Kluwer, Dordrecht (1999).Google Scholar
  25. 25.
    O. E. Barndorff-Nielsen and N. N. Leonenko. Burgers turbulence problem with linear or quadratic external potential, J. Appl. Prob. 42:550–565 (2005).Google Scholar
  26. 26.
    L. Bertini and N. Cancrini. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Physics. 78:1377–1401 (1995).Google Scholar
  27. 27.
    V. V. Anh, J. M. Angulo and M. D. Ruiz-Medina. Possible Long-Range Dependence in Fractional Random Fields. J. Stat. Plan. Inf. 80:95–110 (1999).Google Scholar
  28. 28.
    X. Wang, C. H. Oh and L. C. Kwek. General approach to functional forms for the exponential quadratic operators in coordinate-momentum space. J. Phys. A.: Math. Gen. 31:4329–4336 (1998).Google Scholar
  29. 29.
    E. M. Stein. Singular Integrals and Differential Properties of Functions. Princeton Univerisity Press (1970).Google Scholar
  30. 30.
    A. G. Ramm. Random Fields Estimation Theory, Logman Scientific & Technical (1990).Google Scholar
  31. 31.
    H. Triebel. Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Co (1978).Google Scholar
  32. 32.
    M. D. Ruiz-Medina, J. M. Angulo and V. V. Anh. Fractional generalized random fields on bounded domains. Stoch. Anal. Appl. 21:465–492 (2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • N. N. Leonenko
    • 1
  • M. D. Ruiz-Medina
    • 2
  1. 1.Cardiff School of MathematicsCardiff UniversityCardiffUnited Kingdom
  2. 2.Department of Statistics and Operations ResearchUniversity of GranadaGranadaSpain

Personalised recommendations