Journal of Statistical Physics

, Volume 125, Issue 5–6, pp 1065–1092 | Cite as

Geometry and Elasticity of Strips and Flowers

  • M. Marder
  • N. Papanicolaou
Article

Abstract

We solve several problems that involve imposing metrics on surfaces. The problem of a strip with a linear metric gradient is formulated in terms of a Lagrangian similar to those used for spin systems. We are able to show that the low energy state of long strips is a twisted helical state like a telephone cord. We then extend the techniques used in this solution to two–dimensional sheets with more general metrics. We find evolution equations and show that when they are not singular, a surface is determined by knowledge of its metric, and the shape of the surface along one line. Finally, we provide numerical evidence by minimizing a suitable energy functional that once these evolution equations become singular, either the surface is not differentiable, or else the metric deviates from the target metric.

Keywords

pattern formation elasticity metric surfaces differential geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1 K. Amano, Global isometric embedding of a Riemannian 2-manifold with nonnegative curvature into a Euclidean 3-space. Journal of Differential Geometry 34:49–83 (1991).MathSciNetMATHGoogle Scholar
  2. 2.
    2 B. Audoly and A. Boudaoud, Rubaná Godets': an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330:1–6 (2002).CrossRefGoogle Scholar
  3. 3.
    3 B. Audoly and A. Boudaoud, Self-similar structures near boundaries in strained systems. Physical Review Letters 91:086105/1–4 (2003).CrossRefADSGoogle Scholar
  4. 4.
    4 D. Chapellet and K. J. Bathe, Fundamental considerations for the finite element analysis of shell structures. Computers and Structures 66:19–36 (1998).CrossRefGoogle Scholar
  5. 5.
    5 J. Chovan, N. Papanicolaou and S. Komineas, Intermediate phase in the spiral antiferromagnet Ba2CuGe2O7. Physical Review B 65:64433 (2002).CrossRefADSGoogle Scholar
  6. 6.
    6 E. P. Eisenhart, An introduction to differential geometry, with use of the tensor calculus. (Princeton University Press, Princeton, 1959).Google Scholar
  7. 7.
    7 A. L. Gol'denveizer, Theory of elastic thin shells. (ASME, New York, 1961).Google Scholar
  8. 8.
    8 H. Goldstein, Classical Mechanics. (Addison-Wesley, Reading, MA 1969).Google Scholar
  9. 9.
    9 A. Goriely, M. Nizette and M. Tabor, On the dynamics of elastic strips. Journal of Nonlinear Science 11(1):3–45 (2001).CrossRefADSMathSciNetMATHGoogle Scholar
  10. 10.
    10 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. 1. Dynamical instabilities. Physica D 105(1–3):20–44 (1997a).CrossRefADSMathSciNetMATHGoogle Scholar
  11. 11.
    11 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. 2. Nonlinear analysis. Physica D 105(1–3):45–61 (1997b).CrossRefADSMathSciNetMATHGoogle Scholar
  12. 12.
    12 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. IIIInstabilities of helical rods. Proceedings of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences 453(1967):2583–2601 (1997c).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    13 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. IVSpontaneous looping of twisted elastic rods. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 454(1980):3183–3202 (1998a).CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    14 A. Goriely and M. Tabor, Spontaneous helix hand reversal and tendril perversion in climbing plants. Physical Review Letters 80(7):1564–1567 (1998b).CrossRefADSGoogle Scholar
  15. 15.
    15 A. Goriely and M. Tabor, The nonlinear dynamics of filaments. Nonlinear Dynamics 21(1):101–133 (2000).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    16 J. X. Hong, Darboux equations and isometric embedding of Riemannian manifolds with nonnegative curvature in R. Chinese Annals of Mathematics Series B 20:123–136 (1999).CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    17 J.-L. Lions and E. Sanchez-Palencia, Sensitive boundary value problems. Comptes Rendus de l'Academie des Sciences, Serie I 319:1021–6 (1994).MathSciNetMATHGoogle Scholar
  18. 18.
    18 M. Marder, The shape of the edge of a leaf. cond-mat\0208232 (2002).Google Scholar
  19. 19.
    19 M. Marder, The shape of the edge of a leaf. Foundations of Physics 33:1743–1768 (2003).CrossRefGoogle Scholar
  20. 20.
    20 M. Marder, E. Sharon, S. Smith and B. Roman, Theory of edges of leaves. Europhysics Letters 62:498–504 (2003).CrossRefADSGoogle Scholar
  21. 21.
    21 J. Nash, The imbedding problem for Riemannian manifolds. Annals of Mathematics 63:20–63 (1956).CrossRefMathSciNetGoogle Scholar
  22. 22.
    22 A. V. Pogorelov, Differential Geometry. (P Noordhoff N. V., Groningen, 1956).Google Scholar
  23. 23.
    23 E. Sanchez-Palencia, On sensitivity and related phenomena in thin shells which are not geometrically rigid. Mathematical Models and Methods in Applied Sciences pp. 139–60 (1999).Google Scholar
  24. 24.
    24 E. Sharon, M. Marder and H. L. Swinney, Leaves, Flowers and Garbage Bags: Making Waves. American Scientist 92:254–261 (2004).CrossRefGoogle Scholar
  25. 25.
    25 E. Sharon, B. Roman, M. Marder, G.-S. Shin and H. L. Swinney, Buckling Cascades in Free Sheets. Nature 419:579 (2002).CrossRefADSGoogle Scholar
  26. 26.
    26 M. Spivak, A comprehensive introduction to differential geometry, Vol. 5. (Publish or Perish, Berkeley, second edition, 1979).Google Scholar
  27. 27.
    27 S. Venkataramani, T. Witten, E. Kramer and R. Geroch, Limitations on the smooth confinement of an unstretchable manifold. Journal of Mathematical Physics 41(7):5107–28 (2000).CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Marder
    • 1
  • N. Papanicolaou
    • 2
  1. 1.Center for Nonlinear Dynamics and Department of Physics The University of Texas at AustinAustinUSA
  2. 2.Department of PhysicsUniversity of Crete, and Research Center of CreteHeraklionGreece

Personalised recommendations