Advertisement

Journal of Statistical Physics

, Volume 123, Issue 4, pp 803–810 | Cite as

The Repulsion Between Localization Centers in the Anderson Model

  • Fumihiko NakanoEmail author
Article

Abstract

In this note we show that, a simple combination of deep results in the theory of random Schrödinger operators yields a quantitative estimate of the fact that the localization centers become far apart, as corresponding energies are close together.

Keywords

Anderson localization localization center 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aizenman, Localization at weak disorder: Some elementary bounds. Rev. Math. Phys. 6:1163–1182 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    F. Germinet and S. De Biévre, Dynamical localization for discrete and continuous random Schrödinger operators. Comm. Math. Phys. 194:323–341 (1998).CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser (1990).Google Scholar
  4. 4.
    D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11(1):11–29 (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88:151–184 (1983).CrossRefADSzbMATHGoogle Scholar
  6. 6.
    L. N. Grenkova, S. A. Molchanov and Ju. N. Sudarev, On the basic states of one-dimensional disordered structures. Comm. Math. Phys. 90(1):101–123 (1983).CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    W. Kirsch, O. Lenoble and L. Pastur, On the mott formula for the a.c. conductivity and binary correlators in the strong localization regime of disordered systems. J. Phys. A. 36(49):12157–12180 (2003).CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Klein and S. Molchanov, Simplicity of eigenvalues in the Anderson model. J. Stat. Phys.(122):95–99 (2006). Google Scholar
  9. 9.
    A. Klein, O. Lenoble and P. Muller, On Mott's formula for the acconductivity in the Anderson model, math-ph/0508007.Google Scholar
  10. 10.
    H. Kunz and B. Souillard, Sur le spectre des operateurs aux differences finies aleatoires. Comm. Math. Phys. 78:201–246 (1980).CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    N. Minami, Local fluctuation of the spectrum of a multidimensional Anderson tight-binding model. Comm. Math. Phys. 177:709–725 (1996).CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    S. Molchanov, The local structure of the spectrum of the one-dimensional Schrödinger operator. Comm. Math. Phys. 78:429–446 (1981).CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    R. Killip and F. Nakano, The global fluctuation of localization centers in the Anderson model, preprint.Google Scholar
  14. 14.
    B. Simon. Lifschitz tails for the Anderson model. J. Stat. Phys. 38:65–76 (1985).CrossRefADSGoogle Scholar
  15. 15.
    H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124:285–299 (1989).CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Science, Department of Mathematics and Information ScienceKochi UniversityKochiJapan

Personalised recommendations